ГАОУ ВО «Дагестанский государственный университет народного хозяйства»

КАФЕДРА МАТЕМАТИКИ

Гаджиев Малла Азизович

Учебно-методическое пособие

Производная функции и ее применение

Махачкала 2018

УДК 51(075) ББК 22.1 я 7

Составитель – **Гаджиев Малла Азизович** – старший преподаватель кафедры математики Дагестанского государственного университета народного хозяйства.

Внутренний рецензент: Атагишиева Гульнара Солтанмурадовна – к.ф.м.н., доцент, заведующая кафедрой информатики Дагестанского государственного университета народного хозяйства

.

В пособии дается основной теоретический материал в краткой форме по теме «Производная функции» и примеры применения ее для исследования поведения функции. Рассматриваются подробные решения задач на применение производной к исследованию функции. Пособие предназначено для студентов 1-х, 2-х курсов СПО.

Гаджиев М.А., **Производная функции и ее применение.** Учебнометодическое пособие по математике. – Махачкала: ДГУНХ, 2018г., 29с.

Учебно-методическое пособие размешено на сайте www.dgunh.ru.

Содержание

Введение	4
1. Понятие производной	6
2. Геометрический смысл производной	8
3. Физический смысл производной	- 10
4. Изучение функции с помощью производной	- 14
4.1 Возрастание и убывание функции. Экстремум функции	- 14
4.2 Достаточные условия убывания и возрастания функции	- 20
4.3 Правило нахождения экстремума	- 21
4.4 Точка перегиба графика функции	- 22
4.5 Общая схема исследования функции и построение ее графика	- 27
Список литературы	29

Введение

Понятие функции является одним из основных понятий математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно.

Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.

Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества $A = \{a\}$ во множество $B = \{b\}$, по которому каждому элементу $a \in A$ поставлен в соответствие определенный элемент $a \in B$. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Главное в этом определении: $\forall a \in A \rightarrow \exists !b \in B$. Под элементами множеств $A \in B$ понимаются при этом элементы произвольной природы.

В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно

малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней.

Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др.

Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин.

Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными.

В своей же работе я хочу подробнее остановится на приложениях производной.

1. Понятие производной

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

$$y' = f'(x)$$
 unu $\frac{dy}{dx}$

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f'(x), называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу х приращение Δx и определяем соответствующее приращение функции $\Delta y = f(x + \Delta x) - f(x)$; 2) составляем отношение

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

3) считая х постоянным, а $\Delta x \to 0$, находим

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

который обозначаем через f'(x), как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x, при котором мы переходим к пределу. Определение: Производной y'=f'(x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом,

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
, или $y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

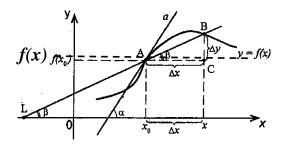
Заметим, что если при некотором значении x, например, при x=a, отношение

$$\frac{f(a+\Delta x)-f(a)}{\Delta x}$$

при $\Delta x \to 0$ не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a) не имеет производной или не дифференцируема в точке x=a.

2. Геометрический смысл производной

Рассмотрим график функции у = f (x), дифференцируемой в окрестностях точки \mathbf{x}_0



Рассмотрим произвольную прямую, проходящую через точку графика функции - точку $A(x_0, f(x_0))$ и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (AB) называется секущей. Из ΔABC : $AC = \Delta x$; $BC = \Delta y$; $tg\beta = \Delta y/\Delta x$.

Так как AC \parallel Ox, то \angle ALO = \angle BAC = β (как соответственные при параллельных). Но \angle ALO - это угол наклона секущей AB к положительному направлению оси Ox. Значит, $tg\beta = k$ - угловой коэффициент прямой AB.

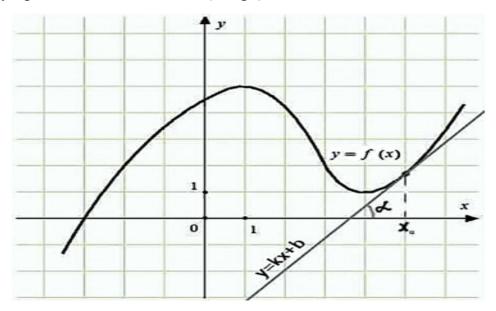
Теперь будем уменьшать Δx , т.е. $\Delta x \rightarrow 0$. При этом точка В будет приближаться к точке А по графику, а секущая АВ будет поворачиваться. Предельным положением секущей АВ при $\Delta x \rightarrow 0$ будет прямая (a), называемая касательной к графику функции y = f(x) в точке А.

Если перейти к пределу при $\Delta x \rightarrow 0$ в равенстве $tg\beta = \Delta y/\Delta x$, то

$$\lim_{\Delta x \to 0} tg\beta = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 получим $\lim_{\Delta x \to 0} tg\beta = \lim_{\Delta x \to 0} tg\beta = tg\alpha$ или $\lim_{\Delta x \to 0} tg\beta = tg\alpha$ а-угол

наклона касательной к положительному направлению оси Ох $\frac{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}}{\int_{\Delta x}} = f'(x_0)$, по определению производной. Но $tg\alpha = k$ - угловой коэффициент касательной, значит, $k = tg\alpha = f'(x_0)$.

Построим произвольный график некой функции y = f(x) на координатной плоскости, построим касательную в точке x_0 , обозначим угол между прямой и осью ox как a (альфа).



Из курса алгебры известно, что уравнение прямой имеет вид: y = kx + b.

Производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

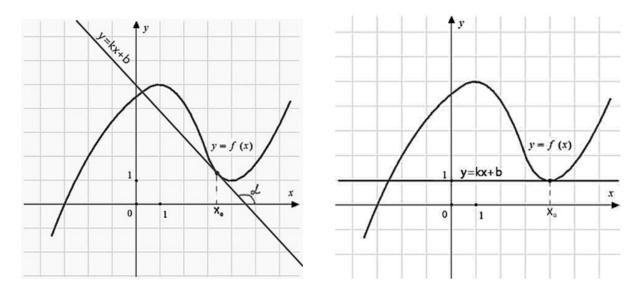
То есть производная функции y = f(x) в точке x_0 равна угловому коэффициенту касательной: y' = f'(x) = k.

А угловой коэффициент в свою очередь равен тангенсу угла a (альфа), т.е.: $y'=f'(x)=k=tg\alpha$

Угол α (альфа) может быть меньше, больше 90 градусов или равен нулю.

Проиллюстрируем, два случая:

- 1. Угол наклона касательной больше 90 градусов (тупой угол).
- 2. Угол наклона касательной равен нулю градусов (касательная параллельна оси OX).



То есть задачи, в которых дан график функции, касательная к этому графику в определённой точке, и требуется найти производную в точке касания, сводятся к нахождению углового коэффициента касательной (либо тангенса угла наклона касательной, что одно и тоже).

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени $[t_0; t_0+\Delta t]$ равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е. $Vcp = \Delta x/\Delta t$. Перейдем к пределу в последнем равенстве при $\Delta t \to 0$. $\lim Vcp(t) = v(t_0)$ - мгновенная скорость в момент времени t_0 , $\Delta t \to 0$. a $\lim = \Delta x/\Delta t = x'(t_0)$ (по определению производной). Итак, v(t) = x'(t).

Физический смысл производной заключается в следующем: производная функции y=f(x) в точке x_0 - это скорость изменения функции f(x) в точке x_0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени. $\upsilon(t) = x'(t)$ - скорость, $a(f) = \upsilon'(t)$ - ускорение, или a(t) = x''(t). Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при

вращательном движении: $\phi = \phi(t)$ - изменение угла от времени, $\omega = \phi'(t)$ - угловая скорость, $\varepsilon = \phi'(t)$ - угловое ускорение, или $\varepsilon = \phi''(t)$.

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня: m = m(x) - масса, $x \in [0; 1], 1$ - длина стержня, p = m'(x) - линейная плотность. С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука F = -kx, x - переменная координата, <math>k- ω^2 коэффициент упругости пружины. Положив =k/m. получим дифференциальное уравнение пружинного маятника $x''(t) + \omega^2 x(t) = 0$, где $\omega =$ \sqrt{k}/\sqrt{m} частота колебаний (l/c), k - жесткость пружины (H/m). Уравнение вида $y'' + \omega^2 y =$ называется уравнением гармонических электрических, электромагнитных). Решением (механических, уравнений является функция $y = A\sin(\omega t + \varphi_0)$ или $y = A\cos(\omega t + \varphi_0)$, где A амплитуда колебаний, ω - циклическая частота, ϕ_0 - начальная фаза.

Понятие производной сложной функции

Пусть y – сложная функция x, т.е. y = f(u), u = g(x), или

$$y(x) = f[g(x)].$$

Если g(x) и f(u) — дифференцируемые функции своих аргументов соответственно в точках x и u = g(x), то сложная функция также дифференцируема в точке x и находится по формуле

$$y'(x) = f'(u)g'(x)$$

Таблица производных элементарных функций	Таблица производных сложных функций
1. $(c)' = 0$	$\int_{-1}^{1} \left(u^{n}\right)' = n u^{n-1} \cdot u'$
2. (x)' = 1	$2. \left(\frac{1}{u}\right)' = -\frac{1}{u^2} \cdot u'$
$3. \left(x^n\right)' = n x^{n-1}$	` /
$4. \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$3. \left(\sqrt{u}\right)' = \frac{1}{2\sqrt{u}} \cdot u'$
$\int_{0}^{\infty} \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	4. $(\ln u)' = \frac{1}{u} \cdot u', (u > 0)$
6. $(\ln x)' = \frac{1}{x}, (x > 0)$	$5. \left(\log_a u\right)' = \frac{1}{u \ln a} \cdot u'$ $a > 0, a \neq 1, u > 0$

7.
$$(\log_a x)' = \frac{1}{x \ln a}, \ a > 0, \ a \ne 1, x > 0$$

$$8. \left(e^x\right)' = e^x$$

9.
$$(a^x)' = a^x \ln a, \ a > 0, \quad a \neq 1$$

$$10. \left(\sin x\right)' = \cos x$$

11.
$$(\cos x)' = -\sin x$$

$$12. \left(tgx \right)' = \frac{1}{\cos^2 x}$$

13.
$$(ctgx)' = -\frac{1}{\sin^2 x}$$

$$14. \left(shx \right)' = chx$$

15.
$$(chx)' = shx$$

$$16. \left(thx\right)' = \frac{1}{ch^2x}$$

$$17. \left(cthx \right)' = -\frac{1}{sh^2x}$$

$$18. \left(arctgx \right)' = \frac{1}{1+x^2}$$

$$19. \left(arcctgx \right)' = -\frac{1}{1+x^2}$$

20.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

21.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$6. \left(e^{u}\right)' = e^{u} \cdot u'$$

$$7. \left(a^{u}\right)' = a^{u} \ln a \cdot u'$$

$$a > 0$$
, $a \neq 1$

8.
$$\left(\sin u\right)' = \cos u \cdot u'$$

9.
$$(\cos u)' = -\sin u \cdot u'$$

$$10. \left(tgu\right)' = \frac{1}{\cos^2 u} \cdot u'$$

11.
$$\left(ctgu\right)' = -\frac{1}{\sin^2 u} \cdot u'$$

12.
$$(shu)' = chu \cdot u'$$

13.
$$(chu)' = shu \cdot u'$$

$$14. \left(thu\right)' = \frac{1}{ch^2u} \cdot u'$$

15.
$$\left(cthu\right)' = -\frac{1}{sh^2u} \cdot u'$$

12.
$$\left(arctgu\right)' = \frac{1}{1+u^2} \cdot u'$$

$$13. \left(arcctgu\right)' = -\frac{1}{1+u^2} \cdot u'$$

14.
$$(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} \cdot u'$$

15.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u'$$

Основные правила дифференцирования

1.
$$(cu)' = c \cdot u'$$
, 2. $(u \pm v)' = u' \pm v'$, 3. $(u \cdot v)' = u' \cdot v + v' \cdot u$, 4. $(\frac{u}{v})' = \frac{u' \cdot v - v' \cdot u}{v^2}$.

Рассмотрим примеры.

1)
$$y = \ln x^2$$

$$y'(x) = (\ln x^2)' = \frac{1}{x^2} \cdot (x^2)' = \frac{1}{x^2} \cdot 2x = \frac{2}{x} \quad (x \neq 0)$$

2)
$$y = \ln^2 x$$

$$y'(x) = (\ln^2 x)' = 2 \cdot \ln x \cdot (\ln x)' = 2 \cdot \ln x \cdot \frac{1}{x} (x > 0)$$

$$3) y = \cos x^3$$

$$y'(x) = -\sin x^3 \cdot (x^3)' = -\sin x^3 \cdot 3x^2$$

4)
$$y = \cos(3x + 2)$$

$$y'(x) = -\sin(3x+2) \cdot (3x+2)' = -3\sin(3x+2)$$

5)
$$y = \sin^3 x$$

$$y'(x) = 3\sin^2 x \cdot (\sin x)' = 3\sin^2 x \cos x$$

6)
$$y = 3^{\cos x}$$

$$y'(x) = 3^{\cos x} \cdot \ln 3 \cdot (\cos x)' = -3^{\cos x} \ln 3 \sin x$$

7)
$$y = (\sqrt{x} - 2)^7$$

$$y'(x) = 7(\sqrt{x} - 2)^6 \cdot \frac{1}{2\sqrt{x}} = \frac{7(\sqrt{x} - 2)^6}{2\sqrt{x}} (x > 0)$$

8)
$$y = e^{\sin x}$$

$$y'(x) = e^{\sin x} \cdot (\sin x)' = e^{\sin x} \cos x$$

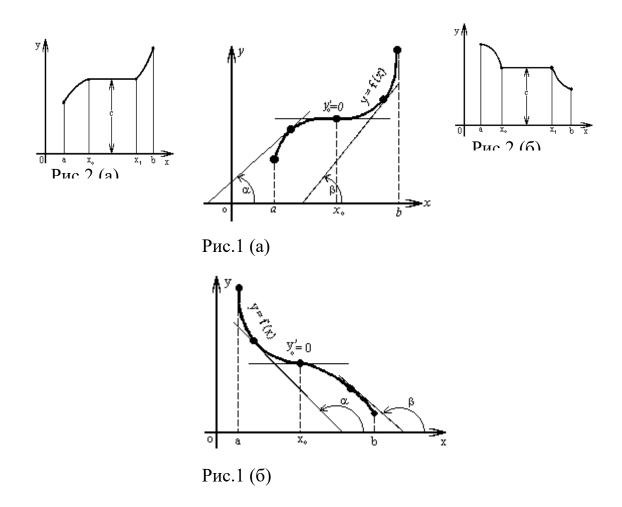
9)
$$y = \frac{1}{a} \arctan \frac{x}{a}$$

$$y'(x) = \frac{1}{a} \left(\arctan \frac{x}{a}\right)' = \frac{1}{a} \cdot \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \left(\frac{x}{a}\right)' = \frac{1}{a} \cdot \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \frac{1}{a} = \frac{1}{a^2} \cdot \frac{1}{\frac{a^2 + x^2}{a^2}} = \frac{1}{x^2 + a^2}$$

4. Изучение функции с помощью производной

4.1 Возрастание и убывание функции. Экстремум функции

Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если $f(x_2) > f(x_1)$ при $x_2 > x_1$.



Из этого определения следует, что у возрастающей в интервале (a,b) функции f(x) в любой точке этого интервала приращения Δx и Δy имеют одинаковые знаки. График возрастающей функции показан на рисунке1(a). Если из неравенства $x_2 > x_1$ вытекает нестрогое неравенство $f(x_2) \ge f(x_1)$, то функция f(x) называется неубывающей в интервале (a, b). Пример такой функции показан на рисунке $f(x_2)$ на интервале $f(x_3)$ она сохраняет

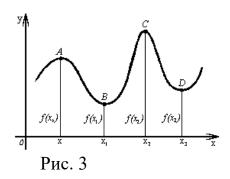
постоянное значение С Определение 2. Функция f(x) называется убывающей в интервале (a, b) если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) убывают, т.е. если $f(x_2) < f(x_1)$ при $x_2 > x_1$.

Из этого определения следует, что у убывающей в интервале (a, b) функции f(x) в любой точке этого интервала приращения Δx и Δy имеют разные знаки. График убывающей функции показан на рисунке 1(б).

Если из неравенства $x_2 > x_1$ вытекает нестрогое неравенство $f(x_2) \le f(x_1)$, то функция f(x) называется невозрастающей в интервале (a, b). Пример такой функции показан на рисунке 2(6). На интервале $[x_0, x_1]$ она сохраняет постоянное значение C.

Теорема 1. Дифференцируемая и возрастающая в интервале (a, b) функция f(x) имеет во всех точках этого интервала неотрицательную производную.

Теорема 2. Дифференцируемая и убывающая в интервале (a, b) функция f(x) имеет во всех точках этого интервала неположительную производную.

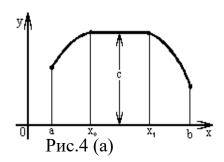


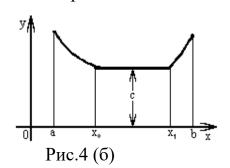
Пусть данная непрерывная функция убывает при возрастании х от x_0 до x_1 , затем при возрастании х от x_1 до x_2 - возрастает, при дальнейшем возрастании х от x_2 до x_3 она вновь убывает и так далее. Назовем такую функцию колеблющейся. График колеблющейся функции показан на рисунке 3. Точки A, C, в которых функция переходит от возрастания к убыванию, так

же, как и точки B, D, в которых функция переходит от убывания к возрастанию, называются точками поворота или критическими точками кривой y = f(x), а их абсциссы - критическими значениями аргумента x. В той точке, где функция переходит от возрастания к убыванию, ордината больше соседних с ней по ту и другую сторону ординат. Так, ордината точки A больше ординат, соседних с ней справа и слева и достаточно к ней близких, т.е. значение функции в точке A, абсцисса которой равна x_0 , больше значений функции в точках, абсциссы которых достаточно близки к x_0 : $f(x_0) > f(x_0 + \Delta x)$.

На рисунке 4(a) изображена функция f(x), непрерывная в интервале (a, b). В интервале (a, x_0] она возрастает, на интервале $[x_0, x_1]$ - сохраняет постоянное значение: $f(x_0) = f(x_1) = C$, в интервале $[x_1, b)$ - убывает. Во всех точках, достаточно близких к x_0 (или x_1), значения функции f(x) удовлетворяют нестрогому неравенству $f(x_0) \ge f(x)$.

Значение $f(x_0)$ функции f(x), при котором выполняется вышеуказанное неравенство, называется максимальным значением функции f(x) или просто максимумом. Определение 3. Максимумом функции f(x) называется такое значение $f(x_0)$ этой функции, которое не меньше всех значений функции f(x) в точках x, достаточно близких x точке x_0 , т.е. в точках x, принадлежащих

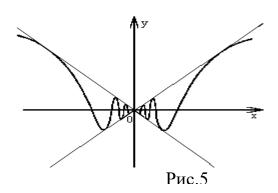




некоторой достаточно малой окрестности точки x_0 . Так, на рисунке 3 показаны два максимума: $f(x_0)$ и $f(x_2)$. В той точке, где функция переходит от убывания к возрастанию, ордината меньше ординат в достаточно близких к ней точках, расположенных справа и слева от нее. Так ордината точки В меньше ординат в точках соседних и достаточно близких к точке x_1 справа и слева. Значение функции в точке, абсцисса которой равна x_1 , меньше значений функции в точках, абсциссы которых достаточно мало отличаются от x_1 : $f(x_1) < f(x_1 + \Delta x)$.

На рисунке 4(б) изображена функция f(x), непрерывная в интервале (а, b). В интервале (а, x_0] она убывает, на интервале $[x_0, x_1]$ - сохраняет постоянное значение: $f(x_0) = f(x_1) = C$, в интервале $[x_1, b)$ - возрастает. Во всех точках, достаточно близких к x_0 (или x_1), значения функции f(x) удовлетворяют нестрогому неравенству $f(x_0) \le f(x)$.

Значение $f(x_0)$ функции f(x), при котором выполняется вышеуказанное неравенство, называется минимальным значением функции f (x) или просто минимумом. Определение 4. Минимумом функции f (x) называется такое значение $f(x_0)$ этой функции, которое не больше всех значений функции f(x)в точках х, достаточно близких к точке x_0 , т.е. в точках х, принадлежащих некоторой достаточно малой окрестности точки х₀. Так, на рисунке 3 показаны два минимума: $f(x_1)$ и $f(x_3)$. По определению наибольшим значением функции f(x) на интервале [a, b] является такое значение $f(x_0)$, для которого для всех точек интервала [a, b] выполняется неравенство $f(x_0) \ge$ f (x), а наименьшим значением функции f (x) на интервале [a, b] является такое значение $f(x_0)$, для которого для всех точек интервала [a, b]выполняется неравенство $f(x_0) \le f(x)$. Из этих определений следует, что функция может достигать своего наибольшего или наименьшего значения как внутри интервала [a, b], так и на его концах а и b. Здесь же максимум и минимум функции f (x) были определены, соответственно, как наибольшее и наименьшее значения в некоторой окрестности точки х₀. Если в точке х₀ функция f (x) достигает максимума или минимума, то говорят, что функция f (х) в точке x_0 достигает экстремума (или экстремального значения). Функция f(x) может иметь несколько экстремумов внутри интервала [a, b], причем может оказаться, что какой-нибудь минимум будет больше какого-нибудь максимума. Таким образом, наибольшее значение функции f(x) на интервале [a, b] - это наибольший из экстремумов функции внутри этого интервала и наибольшее из значений функции на концах интервала. Аналогично наименьшее значение функции f(x) на интервале [a, b] - это наименьший из экстремумов функции внутри этого интервала и наименьшее из значений функции на концах интервала.



Например функция, изображенная на рисунке 3, достигает наибольшего значения f(x) в точке x_2 , наименьшего - в точке x_1 интервала $[x_0, x_3]$. На рисунке 5 изображена функция, имеющая бесконечное число минимумов и максимумов.

Теорема 3 (необходимый признак экстремума). Если функция f(x) имеет в точке x_0 экстремум, то ее производная в данной точке или равна нулю или не существует. Но функция f(x) может иметь экстремумы и в тех точках x_0 , в которых ее производная не существует. Например, функция y = |x| в точке $x_0 = 0$ не дифференцируема, но достигает минимума. Точки такого типа называют угловыми. В них кривая не имеет определенной касательной.

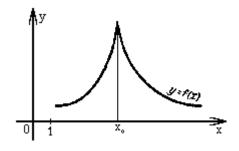


Рис. 6

На рисунке 6 изображена функция f(x), не имеющая в точке x_0 производной [f' $(x_0) = 0$] и достигающая в этой точке максимума. При $x > x_0$ и $f'(x) = f(x_0)$, при $x < x_0$ и при $x > x_0$ $f'(x) = f(x_0)$. Значит касательная кривой y = f(x) при $x = x_0$ перпендикулярна к оси Ох. Такие точки называются точками возврата кривой y=f(x). Таким образом, необходимым признаком существования в точке x₀ экстремума функции f (x) является выполнение следующего условия: в точке x_0 производная f'(x) или равна нулю, или не существует. Этот признак не является достаточным условием существования экстремума функции f (x) в точке x₀: можно привести много примеров функций, удовлетворяющих этому условию при х $= x_0$, но, однако, не достигающих экстремума при $x = x_0$. Например, производная функции $y=x^3$ при $x_0=0$ равна нулю, однако эта функция при $x_0 = 0$ не достигает экстремального значения.

Пример. Найти промежутки монотонности и экстремумы функции $f(x) = x^3 - 3x^2$

Решение: Найдем первую производную функции $f'(x) = 3x^2 - 6x$

Найдем критические точки по первой производной, решив уравнение $3x^2-6x=0$; 3x(x-2)=0; $x_1=0$; $x_2=2$.

Исследуем поведение первой производной в критических точках и на промежутках между ними.

X	$(-\infty;0)$	0	(0;2)	2	$(2;+\infty)$
f'(x)	+	0	-	0	+
f(x)	возрастает	max	убывает	min	возрастает

$$f(0) = 0^3 - 3 \cdot 0^2 = 0$$

$$f(2) = 2^3 - 3 \cdot 2^2 = -4$$

Ответ: Функция возрастает при $x \in (-\infty; 0)U(2; +\infty)$; функция убывает при $x \in (0;2)$; точка минимума функции (2; -4); точка максимума функции (0;0).

Самостоятельно:

- 1) Найти промежутки возрастания и убывания функции $f(x) = x^3 + 6x^2 + 9x.$
 - 2) Найти промежутки возрастания и убывания функции $f(x) = 2x^2 \ln x$.
 - 3) Найти экстремумы функции $f(x) = \frac{8\sqrt{x}}{x+1}$
- 4) Найти интервалы возрастания и убывания и экстремумы функции $f(x) = -\frac{1}{3}x^3 + 3x^2 5x 1$
- 5) Найти промежутки монотонности и экстремумы функции $f(x) = 8x + \frac{x^4}{4}$
- 4.2 Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции

Теорема 4. Если функция f(x) имеет в каждой точке интервала (a, b) неотрицательную производную, то она является неубывающей функцией в этом интервале. Теорема 5. Если функция f(x) в каждой точке интервала (a, b) имеет неположительную производную, то она является невозрастающей функцией в этом интервале.

Теорема 6. (первый достаточный признак экстремума). Если производная f'(x) функции f(x) обращается в нуль в точке x_0 или не существует и при переходе через x_0 меняет свой знак, то функция f(x) имеет в

этой точке экстремум (максимум, если знак меняется с "+" на "-", и минимум, если знак меняется с "-" на "+"). Теорема 7. (второй достаточный признак существования экстремума функции). Если в точке x_0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f "(x) отлична от нуля, то в точке x_0 функция f(x) достигает экстремума (минимума, если f "(x) > 0, и максимума, если f "(x) < 0). Предполагается, что f "(x) непрерывна в точке x_0 и ее окрестности.

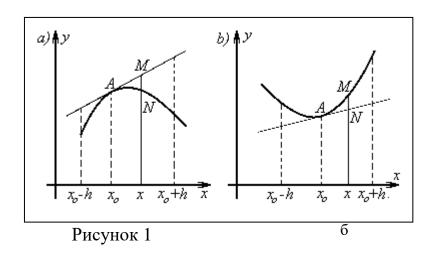
4.3 Правило нахождения экстремума

- <u>1</u>. Чтобы найти экстремум функции, надо:
- 1) найти производную данной функции;
- 2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;
- 3) определить знак производной в каждом из промежутков, отграниченных стационарными точками (стационарными точками называют точки в которых производная равна 0);
- 4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;
- 5) заменить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.

Если функция имеет точки разрыва, то эти точки должны быть

включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.

4.4 Точка перегиба графика функции



Будем говорить, что кривая y = f(x) в точке x_0 обращена выпуклостью вверх, если существует такая окрестность точки x_0 , что часть кривой, соответствующая этой окрестности, лежит под касательной к этой кривой, проведенной в точке A с абсциссой x_0 . (см. Рисунок 1а).

Будем говорить, что кривая y = f(x) в точке x_0 обращена выпуклостью вниз, если существует такая окрестность точки x_0 , что часть кривой, соответствующая этой окрестности, лежит над касательной к этой кривой, абсциссой проведенной точке A c (см. Рисунок \mathbf{x}_0 . Из определения выпуклости вверх (вниз) кривой y = f(x) в точке x_0 следует, что для любой точки х из интервала $(x_0 - h, x_0 + h)$, не совпадающей с точкой x_0 , имеет место неравенство f(x) - y < 0 (f(x) - y > 0) где f(x) - ордината точки M кривой y = f(x), y - ордината точки N касательной y - $y_0 = f'(x_0)(x$ данной кривой в точке А. (смотри рисунок 1, а, б). Ясно, что и наоборот, если для любой точки х интервала $(x_0 - h, x_0 + h)$, не совпадающей с x_0 , выполняется неравенство f(x) - y < 0(f(x) - y > 0), To кривая y = f(x) в точке x_0 обращена выпуклостью вверх (вниз). Будем называть кривую y = f(x) выпуклой вверх (вниз) в интервале (a, b), если она выпукла вверх (вниз) в каждой точке этого интервала. Если кривая y = f(x) обращена выпуклостью вверх в интервале (a, b), то с увеличением аргумента х угловой коэффициент касательной к этой кривой в точке с абсциссой х будет уменьшаться.

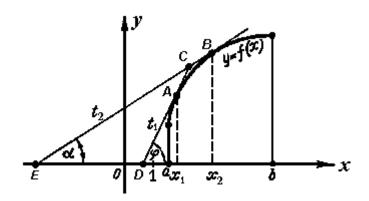


Рисунок 2.

В самом деле, пусть абсцисса x_1 точки A меньше абсциссы x_2 точки B (рис. 2). Проведем касательные t_1 и t_2 соответственно в точках A и B к кривой y = f(x). Пусть а и j - углы наклона касательных t_1 и t_2 . Тогда из рис. 2 видим, что j - внешний угол треугольника ECD, а поэтому он больше угла а. Следовательно $tg\phi > tg\alpha$ или $f'(x_1) > f'(x_2)$.

Таким образом, мы показали, что если в интервале (a, b) кривая y = f(x) обращена выпуклостью вверх, то с увеличением аргумента x функция y = f(x) убывает. Поэтому вторая производная f'(x) функции f(x), как производная убывающей функции f'(x), будет отрицательна или равна нулю в интервале (a, b): f''(x) = 0.

Если кривая y = f(x) обращена выпуклостью вниз, то из рис.2

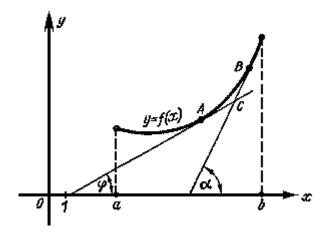


Рисунок 3.

непосредственно видно, что $tg\alpha > tg\phi$ т.е. $f'(x_2) > f'(x_1)$, а поэтому в интервале (a, b) производная f '(x) возрастает. Тогда вторая производная f "(x) функции f (x), как производная возрастающей в интервале (a, b) функции f'(x), будет положительна ИЛИ равна нулю: $f''(x) \ge 0$. Докажем, что и наоборот, если $f''(x) \le 0$ в некотором интервале (a, b), то в этом интервале кривая y = f(x) обращена выпуклостью вверх; если $f''(x) \ge 0$ в интервале (a, b), то в этом интервале кривая обращена выпуклостью вниз. Запишем уравнение касательной $y - y_0 = f'(x_0)(x - x_0)$ к кривой y = f(x) в точке x_0 , где $a < x_0$ b, в виде $y = y_0 + f'(x_0)(x - x_0)$. Очевидно, $y_0 = f(x_0)$, а потому последнее уравнение можно записать в виде $y = f(x_0) + f'(x_0)(x - x_0)$. (1)

Но, согласно формуле Тейлора, при n = 2 имеем:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$
 (2)

Фиксируя х в интервале (a, b) и вычитая почленно из уравнения (2) уравнение (1), получим:

$$f(x) - y = \frac{f''(x_0)}{2!} (x - x_0)^2$$
 (3)

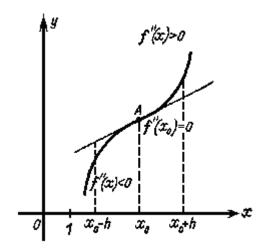


Рисунок 4.

Точка кривой, в которой кривая меняет направление изгиба, т.е. переходит от выпуклости вверх к выпуклости вниз или наоборот, называется точкой перегиба кривой (рис.4). (В этом определении предполагается, что в точке перехода кривой от выпуклости вверх к выпуклости вниз (или наоборот) имеется единственная касательная). Теорема 8. Пусть функция f(x) имеет непрерывную вторую производную f''(x) и пусть $A[x_0; f(x_0)]$ - точка перегиба кривой y = f(x). Тогда $f''(x_0) = 0$ или не существует. Доказательство. Рассмотрим для определенности случай, когда кривая y = f(x) в точке перегиба $A[x_0; f(x_0)]$ переходит от выпуклости вверх в выпуклости вниз (рис.4). Тогда при достаточно малом h в интервале $(x_0 - h, x_0)$ вторая производная f''(x) будет меньше нуля, а в интервале $(x_0, x_0 + h)$ - больше нуля. Но f''(x) - функция непрерывная, а потому, переходя от отрицательных значений к положительным, она при $x = x_0$ обращается в нуль: $f''(x_0) = 0$.

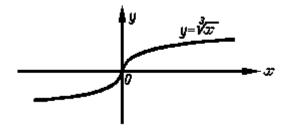


Рисунок 5.

На рис.5 изображен график функции $f(x) = \sqrt[3]{x}$. Хотя при $x_0 = 0$ имеется касательная и точка перегиба, все же вторая производная f "(x) не равна нулю, она даже не существует в этой точке. В самом деле, имеем

$$f'(x) = \frac{1}{3\sqrt[3]{x^2}}, \ f'(0) \to \infty, \ f''(x) = -\frac{2}{3x\sqrt[3]{x^2}}$$

Итак, f "(0) не существует. Но тем не менее точка O (0; 0) является точкой перегиба, так как при x < 0 f "(x) > 0 и кривая выпукла вниз, а при x > 0 f"(x) < 0 и кривая выпукла вверх. Таким образом в случае непрерывности второй производной f "(x) обращение в нуль или несуществование ее в какой-нибудь точки кривой y = f(x) является необходимым условием существования точки перегиба. Однако это условие не является достаточным.

Теорема 9. Если вторая производная f "(x) непрерывна и меняет знак при $x = x_0$, то точка $A[x_0 ; f(x_0)]$ является точкой перегиба кривой y = f(x) при условии, конечно, что в точке A существует касательная. Доказательство. Пусть например f "(x) < 0 при x_0 - h < x < x_0 и f "(x) > 0 при x_0 < x < x_0 + x_0 + x_0 . Тогда в интервале (x_0 - x_0 + x_0) кривая x_0 = x_0 =

- 4.5 Общая схема исследования функции и построение ее графика
- 1. Находим область определения функции f(x)
- 2. Находим точки пересечения кривой y = f(x) с осями координат и наносим их на чертеж.
- 3. Определяем, симметрична ли кривая y = f(x) относительно осей координат и начала координат.
- 4. Исследуем функцию y = f(x) на непрерывность. Если функция имеет в точке x_0 разрыв, то отмечаем ее на чертеже.
 - 5. Находим асимптоты кривой, если они имеются.
- 6. Находим максимум и минимум функции и отмечаем на чертеже точки кривой с максимальной и минимальной ординатами.
- 7. Исследуем кривую y = f(x) на выпуклость вверх или вниз, находим точки перегиба кривой и отмечаем их на чертеже.
 - 8. Вычерчиваем кривую y = f(x).

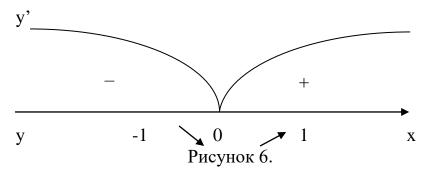
Пример: Исследовать функцию $y = \frac{1+x^2}{1-x^2}$ и построить ее график.

Решение: 1. Область определения ($-\infty$; -1) U (-1; 1) U (1; $+\infty$), т.е. $x \neq \pm 1$.

- 2. Функция четная, так как f(-x) = f(x), и ее график симметричен относительно оси ординат.
- 3. Вертикальные асимптоты могут пересекать ось абсцисс в точках $x = \pm 1$. Так как пределы функции при $x \to 1 0$ (слева) и при $x \to 1 + 0$ (справа) бесконечны, т.е. $\lim_{x\to 1+0} \frac{1+x^2}{1-x^2} = -\infty$ и $\lim_{x\to 1-0} \frac{1+x^2}{1-x^2} = +\infty$, то прямая x=1 есть вертикальная асимптота. В силу симметрии графика f(x) x=-1 также вертикальная асимптота.
- 4. Поведение функции в бесконечности. Вычислим $\lim_{x\to +\infty} \frac{1+x^2}{1-x^2} = -1$. В силу четности имеем также $\lim_{x\to -\infty} \frac{1+x^2}{1-x^2} = -1$ горизонтальная асимптота.
- 5. Экстремумы и интервалы монотонности.

Найдем $y' = \frac{2x(1-x^2)-(1+x^2)(-2x)}{(1-x^2)^2} = \frac{4x}{(1-x^2)^2}$; y' = 0 при x = 0 и y' не существует при $x \neq \pm 1$.

Однако критической является только точка $x_1 = 0$ (так как значения $x \neq \pm 1$ не входят в область определения функции). Поскольку при x < 0 f'(x) < 0, а при x > 0 f'(x) > 0 (рисунок 6), то x = 0 — точка минимума и $f_{min} = f(0) = 1$ -минимум функции. На интервалах $(-\infty; -1)$ и (-1; 0) функция убывает, на интервалах (0; 1) и $(1; \infty)$ — возрастает.



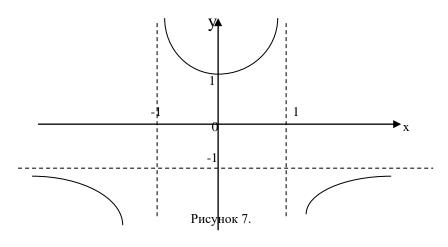
6. Интервалы выпуклости и точки перегиба.

Найдем:
$$y'' = \frac{4(1-x^2)^2 - 4x \cdot 2(1-x^2)(-2x)}{(1-x^2)^4} = \frac{4(1+3x^2)}{(1-x^2)^3}$$

Очевидно, что у'' > 0 на интервале (-1; 1) и функция выпукла вниз на этом интервале. у''<0 на интервалах (- ∞ ; -1), (1; ∞), и на этих интервалах функция выпукла вверх. Точек перегиба нет.

7. Точки пересечения с осями f(0) = 1, т.е. точка пересечения с осью ординат (0; 1). Уравнение f(x) = 0 решений не имеет, следовательно, график функции не пересекает ось абсцисс.

График функции изображен на рисунке 7.



Список литературы:

- 1. Баврин И. И., Матросов В. Л. Общий курс высшей математики: Учеб. для студентов физ.-мат. спец. пед. вузов. М.: Просвещение, 2016. 464 с.
- 2. Высшая математика для экономистов: Учебник для вузов/ Н. Ш. Кремер, Б. А. Путко, И. М. Тришин, М. Н. Фридман; Под ред. проф. Н. Ш. Кремера. 2-е изд., перераб. и доп. М.: ЮНИТИ, 2015. 471 с.
- 3. Гусак А. А. Математический анализ и дифференциальные уравнения: справочное пособие по решению задач/ А.А. Гусак. Изд-е 2-е, стереотип. Мн.: «ТетраСистемс», 2013.
- 4. Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер, 2012. 464 с.: ил. (Серия «Учебное пособие»).