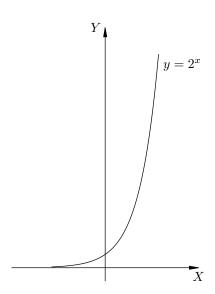
Показательная функция

Показательная функция — это функция $y = a^x$, где a > 0 и $a \neq 1$.

Это одна из интереснейших функций в математике, и рассказ о ней мы начнём с древней индийской легенды.

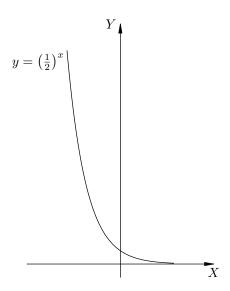
Однажды царь узнал, что в его стране один мудрец изобрел замечательную игру — шахматы. Царь приказал доставить мудреца к себе во дворец, сыграл с ним несколько партий, и шахматы очень понравились ему. В восторге царь сказал мудрецу: «Выбирай себе любую награду. Всё получишь, чего ни пожелаешь!»


А мудрец ответил: «Пусть на первую клетку шахматной доски положат одно пшеничное зерно. На вторую — два, на третью — четыре, и на каждую следующую в два раза больше, чем на предыдущую. Всё это зерно и будет моей наградой».

Царь рассмеялся, решив, что мудрец, должно быть, спятил, раз просит о такой ничтожной вещи, как кучка зерна, но приказал слугам всё исполнить. И на первую клетку шахматной доски положили одно зерно $(2^0 = 1)$, на вторую два $(2^1 = 2)$, на третью $2^2 = 4$. На десятой клетке уже не помещались $2^9 = 512$ зёрен...

Несколько дней царский казначей вычислял требуемое количество зёрен. Оказалось, что выполнить просьбу мудреца невозможно— даже если все поля нашей планеты засеять пшеницей!

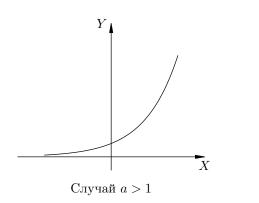
Зависимость, о которой говорится в легенде, описывается функцией $y=2^x$. Построим её график. Для этого посчитаем значения функции при целых x, нанесём точки на координатную плоскость и соединим их плавной линией.

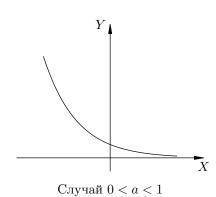

x	-4	-3	-2	-1	0	1	2	3	4
y	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	16

Мы видим, что эта функция является возрастающей, и растёт она очень быстро. Более того — чем больше значение x, тем больше в этой точке крутизна графика. То есть растёт не только функция, но и её производная.

Теперь построим график функции $y = \left(\frac{1}{2}\right)^x$.

x	-4	-3	-2	-1	0	1	2	3	4
\overline{y}	16	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$


Эта функция — убывающая. Её график зеркально симметричен графику функции $y=2^x$ относительно оси Y.


Заметим, что при построении этих графиков мы сделали одно допущение.

Мы уже знаем, что такое степень с рациональным показателем — об этом рассказывается в статье «Степени и корни». Но понятия степени с иррациональным показателем мы не вводили (например, $2^{\sqrt{2}}$ — что это такое?). Интуитивно мы чувствуем, что функция $y=2^x$ определена для всех действительных x и её график должен быть непрерывной линией, однако доказательство этого выходит за рамки школьного курса.

Тем не менее, свойства показательной функции $y=a^x$ активно используются при решении задач. Перечислим наиболее важные из них.

- 1. Область определения функции все действительные числа: D(y) = R.
- 2. Область значений функции: $E(y) = (0; +\infty)$.
- 3. Поскольку $a^0 = 1$, график проходит через точку (0,1).
- 4. При a>1 функция возрастает. При 0< a<1 функция убывает.

