ГАОУ ВО «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НАРОДНОГО ХОЗЯЙСТВА»

Бабичева Т.А.

Кафедра математики

УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА»

РЕШЕНИЕ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ

Бабичева Т.А. Учебное пособие «Решение показательных уравнений и неравенств» (для самостоятельной работы студентов) — Махачкала: ДГУНХ, 2019. - 29 с.

Составитель: Бабичева Татьяна Анатольевна — старший преподаватель кафедры математики Дагестанского государственного университета народного хозяйства.

Внутренний рецензент: Гереева Тату Рашидовна, к.э.н., зав. кафедрой

прикладной математики и информационных

технологий ДГУНХ.

Внешний рецензент: Ибрагимов Мурад Гаджиевич, доцент,

кандидат физико-математических наук,

доцент кафедры ДУ и ФА ДГУ.

Учебное пособие «Решение показательных уравнений и неравенств» (для самостоятельной работы студентов) размещено на официальном сайте www.dgunh.ru

Цель данного пособия — помочь студентам лучше освоить понятия курса, научить решать задачи по этому разделу математики. Для закрепления теоретических знаний, приобретения навыков в решении задач и с целью самопроверки.

[©] ГАОУ ВО «ДГУНХ», 2019.

[©] Бабичева Т.А., 2019.

ОГЛАВЛЕНИЕ

1. Показательные уравнения	4
1.1. Простейшие уравнения	
1.2. Уравнения, решаемые их преобразованиями	4
1.3. Уравнения, решаемые разложением на множители	6
1.4. Уравнения, решаемые с помощью замены неизвестной	6
Примеры решения уравнений	8
Упражнения для самостоятельного решения	11
2. Показательные неравенства	15
Примеры решения неравенств	
Упражнения для самостоятельного решения	17
3. Системы показательных уравнений	19
Примеры решения систем уравнений	21
Упражнения для самостоятельного решения	24
Творческие задания	
Контрольная работа	27
ЛИТЕРАТУРА	29

1. Показательные уравнения

Показательным уравнением называется уравнение, в котором **неизвестное** *х* **входит только в показатели степени** при некоторых постоянных основаниях.

Пример 1.

- а) Уравнение $3^{x^2-2x} \cdot 5^{2-x} + 2^{\sqrt{1-x}} = 7^{x^3}$ показательное.
- б) Уравнение $3^{x^2-2x} \cdot 5^{2-x} + \sqrt{1-x} = 7^{x^3}$ не является показательным.

Рассмотрим систематику показательных выражений и способы решения уравнений. Так как показательная функция a^x монотонна и ее область значений $(0;\infty)$, то простейшее показательное уравнение $a^x = b$ имеет единственный корень при b > 0. Именно к виду $a^x = b$ надо сводить более сложные уравнения.

1.1. Простейшие уравнения

Пример 2. Решим уравнение
$$4^{x^2+3x} = \frac{1}{16}$$
.

Решение: Правую часть уравнения представим в виде степени числа 4 и получим: $4^{x^2+3x}=4^{-2}$. Так как равны степени числа 4, то равны и показатели степеней. Имеем квадратное уравнение $x^2+3x=-2$ или $x^2+3x+2=0$. Корни этого уравнения $x_1=-1$ и $x_2=-2$ являются и решениями данного уравнения.

1.2. Уравнения, решаемые их преобразованиями

Пример 3. Решим уравнение $5^{x+3} - 3 \cdot 5^{x+1} - 10 \cdot 5^x = 4$.

Решение: Так как все слагаемые в левой части уравнения имеют вид 5^{x+a} (где a — некоторое число), то вынесем общий множитель 5^x за скобки. Получаем: $5^x(5^3-3\cdot5-10)$ или $5^x\cdot100=4$. Разделим обе части уравнения на

число 100. Имеем: $5^x = \frac{1}{25}$ или —. Так как равны степени числа 5, то равны и показатели степеней. Тогда находим единственный корень данного уравнения x = -2.

Ответ: x = -2

Вынесение общего множителя за скобки можно использовать и при решении уравнений, содержащих **степени с двумя разными основаниями**.

Пример 4. Решим уравнение $9^x - 2^{x+\frac{7}{2}} = 2^{x+\frac{1}{2}} - 3^{2x-1}$.

Решение: В данное уравнение входят числа 2 и 3 в различных степенях. Поэтому сгруппируем члены уравнения, содержащие степени числа 3, в левой части, а члены, содержащие степени числа 2, – в правой. Получаем: $9^x + 3^{2x-1} = 2^{x+\frac{1}{2}} + 2^{x+\frac{7}{2}}.$

В левой части вынесем за скобки общий множитель 3^{2x-1} , в правой — общий множитель $2^{x+\frac{1}{2}}$. Имеем: $3^{2x-1}(3+1)=2^{x+\frac{1}{2}}(1+2^3)$, или $3^{2x-1}\cdot 4=2^{x+\frac{1}{2}}\cdot 9$, или $3^{2x-1}\cdot 2^2=2^{x+\frac{1}{2}}\cdot 3^2$. Разделим обе части этого уравнения на правую часть (очевидно, она не равна нулю): $\frac{3^{2x-1}\cdot 2^2}{2^{x+\frac{1}{2}}\cdot 3^2}=1$, или $\frac{9^{x-\frac{3}{2}}}{2^{x-\frac{3}{2}}}=1$, или $(\frac{9}{2})^{x-\frac{3}{2}}=(\frac{9}{2})^0$. Так как равны степени числа $\frac{9}{2}$, то равны и показатели степеней: $x-\frac{3}{2}=0$, откуда $x=\frac{3}{2}$.

Ответ: $x = \frac{3}{2}$

1.3. Уравнения, решаемые разложением на множители

Одним из наиболее распространенных преобразований является разложение уравнения на множители. В частности, оно используется при различных основаниях степеней.

Пример 5. Решим уравнение $2^{x+1} \cdot 3^{2x-1} \cdot 5^x = 5400$.

Решение: Число 5400 разложим на простые множители: $5400 = 2^3 \cdot 3^3 \cdot 5^2$. Тогда уравнение имеет вид $2^{x+1} \cdot 3^{2x-1} \cdot 5^x = 2^3 \cdot 3^3 \cdot 5^2$. Разделим обе части уравнения на его правую часть. Получаем: $\frac{2^{x+1} \cdot 3^{2x-1} \cdot 5^x}{2^3 \cdot 3^3 \cdot 5^2} = 1$, или $2^{x-2} \cdot 3^{2x-4} \cdot 5^{x-2} = 1$, или $(2 \cdot 3^2 \cdot 5)^{x-2} = 1$, или $90^{x-2} = 90^0$, тогда x-2=0 и x=2.

Otbet: x-2=0, x=2.

Разложение на множители также используется и в уравнениях, содержащих помимо показательных функций другие функции.

Пример 6. Решим уравнение $2 \cdot 5^x \sin x + 1 = 2\sin x + 5^x$.

Решение: Перенесем все члены уравнения в левую часть, сгруппируем их и вынесем общие множители за скобки. Имеем: $2 \cdot 5^x \sin x + 1 - 2\sin x - 5^x = 0$, или $(2 \cdot 5^x \sin x - 2\sin x) + (1 - 5^x) = 0$, или $2\sin x(5^x - 1) - (5^x - 1) = 0$, или $(5^x - 1)(2\sin x - 1) = 0$. Так как произведение двух множителей равно нулю, то один из них равен нулю. Получаем два уравнения:

а)
$$5^x - 1 = 0$$
 или $5^x = 5^0$, откуда $x = 0$;

б)
$$2\sin x - 1 = 0$$
 или $\sin x = \frac{1}{2}$, тогда $x = (-1)^n \arcsin \frac{1}{2} + \pi n = (-1)^n \cdot \frac{\pi}{6} + \pi n$, где $n \in \mathbb{Z}$.

Ответ: a)
$$x = 0$$
; б) $x = (-1)^n \arcsin \frac{1}{2} + \pi n = (-1)^n \cdot \frac{\pi}{6} + \pi n$, где $n \in \mathbb{Z}$.

1.4. Уравнения, решаемые с помощью замены неизвестной

Как и в уравнениях других видов, в случае показательных уравнений часто используется замена неизвестной.

Пример 7. Решим уравнение $3^{x+1} - 8 = 3^{1-x}$.

Решение: Запишем данное уравнение в виде $3 \cdot 3^x - 8 = \frac{3}{3^x}$ и введем новую неизвестную $t = 3^x > 0$. Получаем уравнение $3t - 8 = \frac{3}{t}$ или $3t^2 - 8t - 3 = 0$. Корни этого квадратного уравнения $t_1 = 3$ и $t_2 = -\frac{1}{3}$ (не подходит, так как t > 0). Получаем простейшее показательное уравнение $3^x = 3$, решение которого x = 1.

Ответ: x = 1

Пример 8. Решим уравнение $2^{\sin^2 x} + 4 \cdot 2^{\cos^2 x} = 6$.

Решение: Учтем основное тригонометрическое тождество $\cos^2 x = 1 - \sin^2 x$, тогда $2^{\cos^2 x} = 2^{1 - \sin^2 x} = \frac{2}{2^{\sin^2 x}}$. Уравнение теперь имеет вид: $2^{\sin^2 x} + 4 \cdot \frac{2}{2^{\sin^2 x}} = 6$. Введем новую неизвестную $t = 2^{\sin^2 x}$ и получим уравнение $t + \frac{8}{t} = 6$ или $t^2 - 6t + 8 = 0$. Корни этого квадратного уравнения $t_1 = 2$ и $t_2 = 4$. Вернемся к старой неизвестной x и получим два уравнения.

- а) $2^{\sin^2 x} = 2$, тогда $\sin^2 x = 1$ или $\sin x = \pm 1$. Решения этих уравнений $x = \frac{\pi}{2} + \pi n$, где $n \in \mathbb{Z}$.
- б) $2^{\sin^2 x} = 4$, откуда $\sin^2 x = 2$. Это уравнение решений не имеет, так как функция синус ограничена: $\sin x \le 1$ и $\sin^2 x \le 1$ при всех x.

Ответ: a) $x = \frac{\pi}{2} + \pi n$, где $n \in \mathbb{Z}$; б) нет решений.

В ряде случаев для решения показательного уравнения приходится вводить две новые переменные и сводить уравнение к однородному.

Пример 9. Решим уравнение $3^{2(x+6)} + 3^{2x^2} - 2 \cdot 3^{x^2+x+6} = 0$.

Решение: Запишем данное уравнение в виде $(3^{x+6})^2 + (3^{x^2})^2 - 2 \cdot 3^{x+6} \cdot 3^{x^2} = 0$ и введем две новые неизвестные $a = 3^{x+6}$ и $b = 3^{x^2}$. Получаем однородное уравнение $a^2 + b^2 - 2ab = 0$ или $(a-b)^2 = 0$, откуда a-b=0 или a=b. Вернемся к старой неизвестной x, получаем уравнение $3^{x+6} = 3^{x^2}$. Так как равны степени числа 3, то равны и показатели степеней. Имеем квадратное уравнение: $x+6=x^2$ или $0=x^2-x-6$, корни которого $x_1=-2$ и $x_2=3$.

Otbet: $x_1 = -2$, $x_2 = 3$.

Примеры решения уравнений

Задача 1. Решить уравнение $4 \cdot 2^x = 1$.

Решение: Запишем уравнение в виде $2^{x+2} = 2^0$, откуда x + 2 = 0.

Ответ: x = -2.

Задача 2. Решить уравнение $7^{2x+1} = 49$.

Решение: Запишем уравнение в виде $7^{2x+1} = 7^2$, откуда 2x+1=2, $x=0,5.,\ 2x=1$

Otbet: x = 0.5.

Задача 3. Решить уравнение $27 \cdot 9^x = 1$.

Решение: Так как $27 = 3^3$, $9x = \left(3^2\right)^x = 3^{2x}$, $1 = 3^0$, то уравнение можно записать в виде $3^{3+2x} = 3^0$, откуда x = -1,5.

OTBET: x = -1,5.

Задача 4. Решить уравнение $27 \cdot 9^x = 1$.

Решение: Так как $27 = 3^3$, $9x = \left(3^2\right)^x = 3^{2x}$, $1 = 3^0$, то уравнение можно записать в виде $3^{3+2x} = 3^0$, откуда x = -1,5.

Otbet: x = -1,5.

Задача 5. Решить уравнение $2^{3x} \cdot 3^x = 576$.

Решение: Так как $2^{3x} = (2^3)^x = 8^x$, $576 = 24^2$, то уравнение можно записать в виде $8^x \cdot 3^x = 24^2$, или в виде $24^x = 24^2$, откуда x = 2.

Ответ: x = 2.

Задача 6. Решить уравнение $5^{2x} = 13^x$.

Решение: Так как $5^{2x} = (5^2)^x = 25^x$, то уравнение можно записать

в виде
$$\frac{25^x}{13^x} = 1$$
, откуда $\left(\frac{25}{13}\right)^x = 1$, $x = 0$.

Ответ: x = 0.

Задача 7. Решить уравнение $3^x = 7^x$.

Решение: Так как $7^x \neq 0$, то уравнение можно записать в виде $\frac{3^x}{7^x} = 1$,

откуда $\left(\frac{3}{7}\right)^x = 1$, x = 0.

OTBET: x = 0.

Задача 8. Решить уравнение $3^{x+1} - 2 \cdot 3^{x-2} = 25$.

Решение: Вынося в левой части за скобки общий множитель 3^{x-2} , получаем $3^{x-2}(3^3-2)=25$, $3^{x-2}\cdot 25=25$, откуда $3^{x-2}=1$, x-2=0, x=2.

OTBET: x = 2.

Задача 9. Решить уравнение $3 \cdot 2^{x+1} + 2 \cdot 5^{x-2} = 5^x + 2^{x-2}$.

Решение: Запишем уравнение в виде $3 \cdot 2^{x+1} - 2^{x-2} = 5^x - 2 \cdot 5^{x-2}$, откуда $2^{x-2} \left(3 \cdot 2^3 - 1\right) = 5^{x-2} \left(5^2 - 2\right), \ 2^{x-2} \cdot 23 = 5^{x-2} \cdot 23, \ \left(\frac{2}{5}\right)^{x-2} = 1, \ x-2=0.$

OTB**e**T: x = 2.

Задача 10. Решить уравнение $9^x - 4 \cdot 3^x - 45 = 0$.

Решение: Заменой $3^x = t$ данное уравнение сводится к квадратному уравнению $t^2 - 4t - 45 = 0$. Решая это уравнение, находим его корни: $t_1 = 9$, $t_2 = -5$, откуда $3^x = 9$, $3^x = -5$. Уравнение $3^x = 9$ имеет корень x = 2, а уравнение $3^x = -5$ не имеет корней, так как показательная функция не может принимать отрицательные значения.

OTBET: x = 2.

Задача 11. Решить уравнение $9^x - 26 \cdot 3^x - 27 = 0$.

Решение Так как $9^x = 3^{2x}$, то уравнение можно записать в виде $3^{2x} - 26 \cdot 3^x - 27 = 0$. С помощью замены $3^x = t$ (тогда $3^{2x} = t^2$) уравнение сводится к квадратному уравнению $t^2 - 26t - 27 = 0$, корнями которого являются $t_1 = 27$, $t_2 = -1$. Уравнение $3^x = 27$ имеет корень x = 3. Уравнение $3^x = -1$ не имеет корней (показательная функция принимает только положительные значения).

Otbet: x = 3.

Задача 12. Решить уравнение $5^{2x^2-5x} = 5^{x^2+2x-10}$. (1)

Решение: Так как 5 > 0, $5 \ne 1$, то $2x^2 - 5x = x^2 + 2x - 10$, (2) откуда $x^2 - 7x + 10 = 0$, $x_1 = 5$, $x_2 = 2$.

Otbet: $x_1 = 5$, $x_2 = 2$.

Отметим, что при таком способе решения получается уравнение, равносильное исходному, например, уравнение (2) равносильно уравнению (1). Поэтому после решения уравнения (2) проверка не нужна (если есть уверенность в том, что не допущены ошибки в вычислениях).

Задача 13. Решить уравнение $3^{|x-1|} = 3^{|x+3|}$.

Решение: Так как 3>0, $3\ne 1$, то исходное уравнение равносильно уравнению |x-1|=|x+3|. Возводя это уравнение в квадрат, получаем его следствие $(x-1)^2=(x+3)^2$, откуда $x^2-2x+1=x^2+6x+9$, 8x=-8, x=-1. Проверка показывает, что x=-1 — корень исходного уравнения.

OTBET: x = -1.

Упражнения для самостоятельного решения

Решить уравнение (1-17).

Задание 1.

1)
$$4^{x-1} = 1$$
:

$$2^{2x} = 2^{4\sqrt{3}}$$
:

3)
$$0,3^{3x-2}=1$$
;

1)
$$4^{x-1} = 1;$$
 2) $2^{2x} = 2^{4\sqrt{3}};$ 3) $0.3^{3x-2} = 1;$ 4) $\left(\frac{1}{3}\right)^{3x} = \left(\frac{1}{3}\right)^{-2};$

5)
$$0.3^{5-2x} = 0.09$$
; **6)** $(2\sqrt[3]{4})^x = 8$.

6)
$$(2\sqrt[3]{4})^x = 8$$
.

Задание 2.

1)
$$27^x = \frac{1}{3}$$

$$2) \quad \left(\frac{1}{5}\right)^x = 25$$

3)
$$400^x = \frac{1}{20}$$

1)
$$27^x = \frac{1}{3}$$
; 2) $\left(\frac{1}{5}\right)^x = 25$; 3) $400^x = \frac{1}{20}$; 4) $\left(\frac{1}{3}\right)^x = \frac{1}{81}$;

5)
$$\left(\frac{1}{5\sqrt{5}}\right)^x = \sqrt[3]{5}$$
; **6)** $\left(\frac{1}{3}\right)^{4-3x} = 27$.

Задание 3.

1)
$$3 \cdot 9^x = 81$$

1)
$$3 \cdot 9^x = 81;$$
 2) $3^{x+\frac{1}{2}} \cdot 3^{x-2} = 1;$

3)
$$0.6^x \cdot 0.6^3 = \frac{0.6^{2x}}{0.6^5}$$
;

4)
$$2 \cdot 4^x = 64$$

4)
$$2 \cdot 4^x = 64$$
; **5)** $0.5^{x+7} \cdot 0.5^{1-2x} = 2$;

6)
$$6^{3x} \cdot \frac{1}{6} = 6 \cdot \left(\frac{1}{6}\right)^{2x}$$
;

7)
$$225 \cdot 15^{2x+1} = 1$$
; 8) $\left(\frac{1}{4} \cdot 4^x\right)^x = 2^{2x+6}$.

Задание 4.

$$\mathbf{1)} \quad 3^{2x-1} + 3^{2x} = 108;$$

1)
$$3^{2x-1} + 3^{2x} = 108$$
; 2) $2^{x+1} + 2^{x-1} + 2^x = 28$; 3) $3^{x-2} - 3^{x-3} = 6$;

3)
$$3^{x-2} - 3^{x-3} = 6$$
:

4)
$$2^{3x+2} + 2^{3x-2} = 30$$
:

4)
$$2^{3x+2} + 2^{3x-2} = 30$$
; **5)** $3^{x-1} - 3^x + 3^{x+1} = 63$; **6)** $4^{x-3} + 4^x = 65$.

$$6) \ 4^{x-3} + 4^x = 65.$$

Задание 5.

1)
$$5^x = 8^x$$
;

$$2) \quad 43^x = 8^{2x};$$

$$(\frac{1}{2})^x = \left(\frac{1}{3}\right)^x;$$

4)
$$3^x = 5^{2x}$$
;

$$(\frac{2}{5})^x = \left(\frac{4}{9}\right)^{\frac{x}{2}};$$

6)
$$4^x = 3^{\frac{x}{2}}$$
.

Задание 6.

1)
$$9^x - 4 \cdot 3^x + 3 = 0$$

2)
$$25^x - 6 \cdot 5^x + 5 = 0$$
:

1)
$$9^x - 4 \cdot 3^x + 3 = 0$$
; 2) $25^x - 6 \cdot 5^x + 5 = 0$; 3) $4^x - 12 \cdot 2^x + 32 = 0$;

4)
$$16^x - 17 \cdot 4^x + 16 = 0$$
; **5)** $64^x - 8^x - 56 = 0$; **6)** $25^x + 4 \cdot 5^x - 5 = 0$;

5)
$$64^x - 8^x - 56 = 0$$
;

6)
$$25^x + 4 \cdot 5^x - 5 = 0$$
:

7)
$$2 \cdot 9^x - 17 \cdot 3^x = 9$$
:

8)
$$25^x + 3 \cdot 5^x + 2 = 0$$
:

7)
$$2 \cdot 9^x - 17 \cdot 3^x = 9$$
; 8) $25^x + 3 \cdot 5^x + 2 = 0$; 9) $9^x - 10 \cdot 3^x + 9 = 0$;

10)
$$3 \cdot 4^x - 11 \cdot 2^x = 4$$
.

Задание 7.

1)
$$3^{x^2+x-12}=1$$

1)
$$3^{x^2+x-12}=1$$
; 2) $2^{x^2-7x+10}=1$;

3)
$$2^{\frac{x-1}{x-2}} = 4$$
;

3)
$$2^{\frac{x-1}{x-2}} = 4$$
; 4) $0.5^{\frac{1}{x}} = 4^{\frac{1}{x+1}}$.

Задание 8.

1)
$$0.3^{x^3-x^2+x-1}=1$$
;

2)
$$\left(2\frac{1}{3}\right)^{-x^2-2x+3}=1;$$

3)
$$5,1^{\frac{1}{2}(x-3)} = 5,1\sqrt{5,1}$$
;

4)
$$100^{x^2-1} = 10^{1-5x}$$
.

Задание 9.

1)
$$10^x = \sqrt[3]{100}$$
:

1)
$$10^x = \sqrt[3]{100}$$
; 2) $10^x = \sqrt[5]{10000}$; 3) $225^{2x^2-24} = 15$;

$$3) \quad 225^{2x^2-24} = 15$$

4) $10^x = \frac{1}{\sqrt[4]{10000}}$; **5)** $(\sqrt{10})^x = 10^{x^2 - x}$.

Задание 10.

1)
$$2^{x^2} \cdot \left(\frac{1}{2}\right)^{\frac{1}{4}x} = \sqrt[4]{8}$$
;

1)
$$2^{x^2} \cdot \left(\frac{1}{2}\right)^{\frac{1}{4}x} = \sqrt[4]{8}$$
; $5^{0.1x} \cdot \left(\frac{1}{5}\right)^{-0.06} = 5^{x^2}$;

3)
$$(0,2)^{x^2} \cdot 5^{2x+2} = \left(\frac{1}{5}\right)^6;$$

4)
$$\left(\frac{1}{2}\right)^{\sqrt{1-x}} \cdot \left(\frac{1}{2}\right)^{-1} = \left(\frac{1}{2}\right)^{2x};$$
 5) $0.7^{\sqrt{x+12}} \cdot 0.7^{-2} = 0.7^{\sqrt{x}};$ **6)** $17^x \cdot 17^{x+5} = 17.$

5)
$$0.7^{\sqrt{x+12}} \cdot 0.7^{-2} = 0.7^{\sqrt{x}}$$
;

$$6) 17^x \cdot 17^{x+5} = 17.$$

Задание 11.

1)
$$7^x - 7^{x-1} = 6$$
:

1)
$$7^x - 7^{x-1} = 6$$
; 2) $3^{2y-1} + 3^{2y-2} - 3^{2y-4} = 315$;

3)
$$5^{3x} + 3 \cdot 5^{3x-2} = 140$$
;

3)
$$5^{3x} + 3 \cdot 5^{3x-2} = 140$$
; 4) $2^{x+1} + 3 \cdot 2^{x-1} - 5 \cdot 2^x + 6 = 0$.

Задание 12.

1)
$$7^{x-2} = 3^{2-x}$$
:

1)
$$7^{x-2} = 3^{2-x}$$
; 2) $2^{x-3} = 3^{3-x}$;

3)
$$3^{\frac{x+2}{4}} = 5^{x+2};$$
 4) $4^{\frac{x-3}{2}} = 3^{2(x-3)}.$

4)
$$4^{\frac{x-3}{2}} - 3^{2(x-3)}$$

Задание 13.

1)
$$(0.5)^{x^2-4x+3} = (0.5)^{2x^2-x+3};$$
 2) $(0.1)^{3+2x} = (0.1)^{2-x^2};$

$$(0,1)^{3+2x} = (0,1)^{2-x^2};$$

3)
$$3^{\sqrt{x-6}} = 3^x$$
;

$$\left(\frac{1}{3}\right)^x = \left(\frac{1}{3}\right)^{\sqrt{2-x}}.$$

Задание 14.

1)
$$3^{x+3} + 3^x = 7^{x+1} + 5 \cdot 7^x$$
;

1)
$$3^{x+3} + 3^x = 7^{x+1} + 5 \cdot 7^x$$
; 2) $3^{x+4} + 3 \cdot 5^{x+3} = 5^{x+4} + 3^{x+3}$;

3)
$$2^{8-x} + 7^{3-x} \equiv 7^{4-x} + 2^{3-x} \cdot 11$$
:

3)
$$2^{8-x} + 7^{3-x} = 7^{4-x} + 2^{3-x} \cdot 11$$
; 4) $2^{x+1} + 2^{x-1} - 3^{x-1} = 3^{x-2} - 2^{x-3} + 2 \cdot 3^{x-3}$;

 $2^{x+2} - 2^x + 2^{x+1} = 20.$

Задание 15.

1)
$$8 \cdot 4^x - 6 \cdot 2^x + 1 = 0$$
;

1)
$$8 \cdot 4^x - 6 \cdot 2^x + 1 = 0$$
; 2) $3^{2x+1} - 10 \cdot 3^x + 3 = 0$;

3)
$$\left(\frac{1}{4}\right)^x + \left(\frac{1}{2}\right)^x - 6 = 0$$
;

4)
$$2^{3x} + 8 \cdot 2^x - 6 \cdot 2^{2x} = 0$$
;

$$5) \quad 13^{2x-1} - 13^x - 12 = 0$$

5)
$$13^{2x-1} - 13^x - 12 = 0$$
; **6)** $5^{3x-1} + 34 \cdot 5^{2x} - 7 \cdot 5^x = 0$.

Задание 16.

1)
$$3^{2x+6} = 2^{x+3}$$
; 2) $5^{x-2} = 4^{2x-4}$;

$$2) 5^{x-2} = 4^{2x-4};$$

3)
$$2^x \cdot 3^x = 36^{x^2}$$
;

3)
$$2^x \cdot 3^x = 36^{x^2}$$
; 4) $9^{-\sqrt{x-1}} = \frac{1}{27}$.

Задание 17.

1)
$$4 \cdot 9^x - 13 \cdot 6^x + 9 \cdot 4^x = 0$$
;

1)
$$4 \cdot 9^x - 13 \cdot 6^x + 9 \cdot 4^x = 0$$
; 2) $16 \cdot 9^x - 25 \cdot 12^x + 9 \cdot 16^x = 0$.

Задание 18.

1)
$$(\sqrt{5})^{|3-x|} = 25$$
; 2) $9^{|x+2|} = \sqrt{3}$.

$$9^{|x+2|} = \sqrt{3} .$$

Задание 19. При каких значениях x сумма чисел 2^{x-1} , 2^{x-4} и 2^{x-2} равна сумме бесконечно убывающей геометрической прогрессии 6,5; 3,25; 1,625; ...?

Задание 20. Доказать, что уравнение имеет только один корень x = 1:

1)
$$4^x + 25^x = 29$$
; 2) $7^x + 18^x = 25$.

$$7^x + 18^x = 25.$$

2. Показательные неравенства

При решении **простейших** показательных **неравенств** $a^{f(x)} \lor b$ используется **монотонность** показательной **функции**: **при** 0 < a < 1 функция **убывающая**, **при** a > 1 — **возрастающая**. Поэтому при рассмотрении показателей степеней **в первом случае знак неравенства меняется на противоположный, во втором — сохраняется.**

Пример 1. Решим неравенство
$$\sqrt[10]{2^{x^2-14,5x}} < \frac{1}{8}$$
.

Запишем неравенство в виде $2^{\frac{x^2-14,5x}{10}} < 2^{-3}$. Так как основание 2 показательной функции больше единицы (показательная функция возрастающая), то показатели степеней связаны неравенством того же знака: $\frac{x^2-14,5x}{10} < -3$ или $x^2-14,5x+30<0$. Решение этого квадратного неравенства $x \in (2,5;12)$.

Пример 2. Решим неравенство $(0.8)^{x^3-3x+4} \ge (0.8)^2$.

Так как основание 0,8 показательной функции меньше 1 (показательная функция убывающая), то показатели степеней связаны неравенством противоположного знака: $x^3 - 3x + 4 \le 2$ или $x^3 - 3x + 2 \le 0$. Разложим левую часть на множители: $(x-1)^2(x+2) \le 0$ и решим это кубическое неравенство методом интервалов. Получаем решение $x \in (-\infty; -2] \cup \{1\}$.

При решении **более сложных неравенств** используются **те же приемы**, что и **при решении аналогичных уравнений**.

Пример 3. Решим неравенство $\frac{1}{3^x + 5} \le \frac{1}{3^{x+1} - 1}$.

Введем новую неизвестную $t=3^x>0$ и получим рациональное неравенство: $\frac{1}{t+5} \le \frac{1}{3t-1}$, или $\frac{1}{t+5} - \frac{1}{3t-1} \le 0$, или $\frac{2t-6}{(t+5)(3t-1)} \le 0$. Учтем, что t>0 и решим это неравенство методом интервалов. Получаем: $t \in \left(\frac{1}{3};3\right]$. Вернемся к старой неизвестной. Имеем двойное неравенство $3^{-1} < 3^x \le 3$. Так как основание 3 степеней больше единицы, то показатели степеней связаны неравенствами того же знака $-1 < x \le 1$ или $x \in (-1;1]$.

Пример 4. Решим неравенство $(x-2)^{x^2-6x+8} \ge 1$.

ОДЗ неравенства $x \in (2, \infty)$. Запишем неравенство в виде $(x-2)^{x^2-6x+8}-1 \ge 0$ и найдем корни, соответствующего уравнения: $x_1 = 3$ и $x_2 = 4$. Решая методом интервалов это неравенство с учетом ОДЗ, получаем: $x \in (2,3] \cup [4,\infty)$.

Примеры решения неравенств

Задача 1. Решить неравенство $3^x < 81$.

Решение. Запишем неравенство в виде $3^x < 3^4$. Так как 3 > 1, то функция $y = 3^x$ является возрастающей. Поэтому решениями неравенства $3^x < 81$ являются числа x < 4.

Otbet. x < 4.

Задача 2. Решить неравенство $\left(\frac{1}{2}\right)^x > \sqrt{8}$.

Решение. Запишем неравенство в виде

$$\left(\frac{1}{2}\right)^x > 2^{\frac{3}{2}}$$
, или $\left(\frac{1}{2}\right)^x > \left(\frac{1}{2}\right)^{-\frac{3}{2}}$.

Так как $y = \left(\frac{1}{2}\right)^x$ - убывающая функция, то $x < -\frac{3}{2}$.

Ответ. $x < -\frac{3}{2}$.

Задача 3. Решить неравенство $3^{x^2-x} < 9$.

Решение. Запишем неравенство в виде $3^{x^2-x} < 3^2$. Так как 3 > 1, то $x^2 - x < 2$, откуда $x^2 - x - 2 < 0$, -1 < x < 2.

Otbet. -1 < x < 2.

Задача 4. Решить неравенство $16^x + 4^x - 2 > 0$.

Решение. Обозначим $4^x = t$, тогда получим квадратное неравенство $t^2 + t - 2 > 0$. Это неравенство выполняется при t < -2 и при t > 1. Так как $t = 4^x$, то получим два неравенства $4^x < -2$, $4^x > 1$. Первое неравенство не имеет решений, так как $4^x > 0$ при всех $x \in R$. Второе неравенство можно записать в виде $4^x > 4^0$, откуда x > 0.

Otbet. x > 0.

Задача 4. Решить неравенство $6^{1-x} > 36$.

Решение. Имеем $6^{1-x} > 6^2$. Так как 6 < 1, то 1-x > 2, откуда x < -1.

Задача 5. Решить неравенство $\left(\frac{1}{9}\right)^x \le 27$.

Решение. Запишем неравенство в виде $\left(\frac{1}{3}\right)^{2x} \le 3^3$, или $\left(\frac{1}{3}\right)^{2x} \le \left(\frac{1}{3}\right)^{-3}$. Так как $0 < \frac{1}{3} < 1$, то $2x \ge -3$, откуда $x \ge -1$,5.

Упражнения для самостоятельного решения

Решить неравенства (1-3).

Задание 1.

1) $3^x > 9;$ 2) $\left(\frac{1}{2}\right)^x > \frac{1}{4};$ 3) $\left(\frac{1}{4}\right)^x < 2;$ 4) $5^{x-1} \le \sqrt{5};$

5) $4^{x} < \frac{1}{2};$ 6) $2^{3x} \ge \frac{1}{2};$ 7) $\left(\frac{1}{3}\right)^{x-1} \le \frac{1}{9};$ 8) $3^{\frac{x}{2}} > 9;$

9) $3^{x^2-4} \ge 1$; 10 $5^{2x^2-18} < 1$; 11) $9^{2x} \le \frac{1}{3}$; 12) $\left(\frac{1}{7}\right)^{x^2-9} \le 1$;

13) $\left(1\frac{3}{4}\right)^{x} < \frac{4}{7};$ **14**) $\left(\sqrt{3}\right)^{4-x^{2}} \ge 1;$ **15**) $\left(0,1\right)^{x+1} \ge 100;$ **16**) $\left(\frac{1}{5}\right)^{\frac{1}{x}} < 125.$

Задание 2.

1) $2^{-x^2+3x} < 4;$ 2) $\left(\frac{7}{9}\right)^{2x^2-3x} \ge \frac{9}{7};$

(3) $\left(\frac{13}{11}\right)^{x^2-3x} < \frac{121}{169};$ (2) $\left(2\frac{2}{3}\right)^{6x^2+x} \le 7\frac{1}{9}.$

Задание 3.

1) $3^{x+2} + 3^{x-1} < 28$; 2) $2^{x-1} + 2^{x+3} > 17$; 3) $2^{2x-1} + 2^{2x-2} + 2^{2x-3} \ge 448$;

4) $9^x - 7 \cdot 3^x - 18$ **<0; 5)** $4^x + 2^{x+1} - 80 < 0$; **6)** $5^{3x+1} - 5^{3x-3} \le 624$.

Задание 4. Найти целые решения неравенства на отрезке [-3;3]:

1) $9^x - 3^x - 6 > 0$; 2) $4^x - 2^x < 12$;

3) $5^{2x+1} + 4 \cdot 5^x - 1 > 0$; 4) $3 \cdot 9^x + 11 \cdot 3^x < 4$.

Задание 5. Найти область определения функции:

1)
$$y = \sqrt{25^x - 5^x}$$
;

2)
$$y = \sqrt{4^x - 1}$$
.

Задание 6. При каких значениях x значения функции $y = \left(\frac{1}{4}\right)^x$ больше значений функции $y = \left(\frac{1}{2}\right)^x + 12$?

Задание 7. Решить графически уравнения

1)
$$3x = 2x + 1$$
; 2) $\left(\frac{1}{2}\right)^x = x^3 + 3$;

3)
$$2^x = -\frac{1}{2}x$$
; 4) $\left(\frac{1}{3}\right)^x = 4 + x^3$.

Задание 8. Решить графически неравенства:

1)
$$\left(\frac{1}{3}\right)^x < 3x + 6;$$

2)
$$2^x \le 12 - x^3$$
.;

3)
$$\left(\frac{1}{2}\right)^x > 2x + 4;$$

4)
$$.3^x \le 4 - x^3$$
.

3. Системы показательных уравнений

При решении систем показательных уравнений применяются **те же способы**, что и для решения показательных уравнений. Достаточно часто системы **непосредственно** сводятся к системам алгебраических уравнений.

Пример 1. Решим систему уравнений $\begin{cases} 2^{3x^2+xy+y} = 0.5 \\ 3^{2x-y} = 81 \end{cases}.$

Запишем данную систему уравнений в виде $\begin{cases} 2^{3x^2+xy+y}=2^{-1} \\ 3^{2x-y}=3^4 \end{cases}$. Получаем систему алгебраических уравнений $\begin{cases} 3x^2+xy+y=-1 \\ 2x-y=4 \end{cases}$. Из второго уравнения выразим y=2x-4 и подставим в первое. Имеем: $3x^2+x(2x-4)+2x-4=-1$ или $5x^2-2x-3=0$. Корни этого уравнения $x_1=1$ и $x_2=-\frac{3}{5}$. Найдем соответствующие значения $y_1=-2$ и $y_2=-5\frac{1}{5}$. Итак, система уравнений имеет два решения: (1;-2) и $\left(-\frac{3}{5};-5\frac{1}{5}\right)$.

Разумеется, при решении систем уравнений широко используется замена неизвестных.

Пример 2. Решим систему уравнений
$$\begin{cases} 3^{x} + 2 \cdot 3^{y} = 15 \\ 2^{2x-y} = 8 \end{cases}.$$

Из второго уравнения найдем 2x - y = 3, откуда y = 2x - 3. Подставим это соотношение в первое уравнение и получим: $3^x + 2 \cdot 3^{2x-3} = 15$ или $3^x + \frac{2}{27} \cdot \left(3^x\right)^2 = 15$. Введем новую неизвестную $t = 3^x > 0$. Имеем квадратное уравнение $t + \frac{2}{27}t^2 = 15$ или $2t^2 + 27t - 405 = 0$, корни которого $t_1 = 9$ и $t_2 = -22,5$ (не подходит, так как t > 0). Возвращаясь к старым неизвестным, получаем уравнение $3^x = 9$, x = 2 и y = 1.

Пример 3. Решим систему уравнений
$$\begin{cases} 2 \cdot 3^{x-1} + 7 \cdot 5^{y+1} = 37 \\ 9^x + 5^y = 10 \end{cases}.$$

Систему уравнений запишем в виде $\begin{cases} \frac{2}{3} \cdot 3^x + 35 \cdot 5^y = 37 \\ (3^x)^2 + 5^y = 10 \end{cases}$ и введем новые переменные $a = 3^x$ и $b = 5^y$ (при этом a, b > 0). Получаем систему алгебраических уравнений $\begin{cases} \frac{2}{3}a + 35b = 37 \\ a^2 + b = 10 \end{cases}$ или $\begin{cases} 2a + 105b = 111 \\ a^2 + b = 10 \end{cases}$. Из второго уравнения выразим $b = 10 - a^2$ и подставим в первое. Имеем: $2a + 105(10 - a^2) = 111$ или $0 = 105a^2 - 2a - 939$. Корни этого квадратного уравнения $a_1 = 3$ и $a_2 = -\frac{313}{105}$ (не подходит, так как a > 0). Найдем $b = 10 - 3^2 = 1$. Вернемся к старым неизвестным. Получаем систему

Примеры решения систем уравнений

простейших показательных уравнений $\begin{cases} 3^x = 3 \\ 5^y = 1 \end{cases}$, откуда x = 1 и y = 0.

Задача 1. Решить систему уравнений $\begin{cases} x + 2y = -1 \\ 4^{x+y^2} = 16 \end{cases}$.

Решение. Решим эту систему способом подстановки: x=-2y-1, $4^{2y-1+y^2}=4^2$, откуда $-2y-1+y^2=2$, $y^2-2y-3=0$, $y_1=3$, $y_2=-1$. Найдем значения x: $x_1=-2\cdot 3-1=-7$, $x_2=-2\cdot (-1)-1=1$.

Ответ: (-7;3), (1;-1).

Задача 2. Решить систему уравнений $\begin{cases} 3^{y+1} - 2^x = 5 \\ 4^x - 6 \cdot 3^y + 2 = 0 \end{cases}$.

Решение. Обозначим $2^{x} = u$, $3^{y} = v$. Тогда система запишется так:

$$\begin{cases} 3v - u = 5 \\ u^2 - 6v + 2 = 0 \end{cases}$$

Решим эту систему способом подстановки:

$$u = 3v - 5$$
, $(3v - 5)^2 - 6v + 2 = 0$,
 $9v^2 - 36v + 27 = 0$, $v^2 - 4v + 3 = 0$, $v_1 = 1$, $v_2 = 3$.

Найдем значения $u: u_1 = -2, u_2 = 4$. Возвратимся к принятым обозначениям:

 $2^{x} = -2$, $3^{y} = 1$. Так как первое из этих уравнений корней не имеет, то решений системы в этом случае нет.

$$2^x = 4$$
, $3^y = 3$, откуда $x = 2$, $y = 1$.

Ответ: (2;1).

Задача 3. Решить систему уравнений $\begin{cases} 2^x \cdot 9^y = 162 \\ 3^x \cdot 4^y = 48 \end{cases}$.

Решение. Перемножив уравнения данной системы, получим $6^x \cdot 36^y = 3^4 \cdot 2 \cdot 6 \cdot 2^3$, или $6^{x+2y} = 6^5$, откуда x = 5 - 2y. Тогда второе уравнение системы примет вид $3^{5-2y}4^y = 48$, или $\left(\frac{4}{9}\right)^y = \frac{48}{3^5} = \left(\frac{4}{9}\right)^2$, откуда y = 2, x = 1.

Ответ: (1;2).

Задача 4. Решить систему
$$\begin{cases} 3^{x-1} \leq \sqrt{3} \\ (0,2)^{3x^2-2} = (0,2)^{2x^2+x+4} \end{cases}.$$

Решение. Решим неравенство $3^{x-1} \le \sqrt{3}$, т. е. неравенство $3^{x-1} \le 3^{\frac{1}{2}}$. Решая, получаем $x-1 \le \frac{1}{2}$, $x \le 1,5$.

Теперь решим уравнение $0.2^{3x^2-2} = 0.2^{2x^2+x+4}$,

$$3x^2 - 2 = 2x^2 + x + 4,$$

$$x^2 - x - 6 = 0$$
, $x_1 = -2$, $x_2 = 3$.

Так как 3 > 1.5, -2 < 1.5, то x = -2.

Otbet: x = -2.

Задача 5. Решить систему
$$\begin{cases} 3^{xy} = 3^{10} \\ 4^x = 4^{7-y} \\ 2^x < 2^y \end{cases}$$

Решение. Решим сначала систему уравнение $\begin{cases} 3^{xy} = 3^{10} \\ 4^x = 4^{7-y} \end{cases}.$

Получаем
$$\begin{cases} xy = 10 \\ x = 7 - y \end{cases}, \begin{cases} xy = 10 \\ x + y = 7 \end{cases}.$$

По теореме, обратной теореме Виета, находим два решения (2;5), (5;2). Теперь решим неравенство $2^x < 2^y$. Так как 2 > 1, то x < y. Решение системы уравнений (2;5) удовлетворяет неравенству x < y, а решение (5;2) ему не удовлетворяет.

Ответ: (2;5).

Задача 6. Решить систему уравнений
$$\begin{cases} 2x + y = 1 \\ 3^{x+y} = 9 \end{cases}$$

Решение. Воспользуемся способом подстановки. Выразив из первого уравнения у, и получим y=1-2x; тогда $3^{x+(1-2x)}=9$ или $3^{1-x}=3^2$, откуда 1-x=2, x=-1. Следовательно , $y=1-2\cdot (-1), y=3$.

Ответ: (-1;3).

Задача 7. Решить систему
$$\begin{cases} 2^{x+1} \rangle 2^{x^3} \\ 7^{x^2-8} = 7^{x-2} \end{cases}.$$

Решение. Решая уравнение $7^{x^2-8} = 7^{x-2}$, получим $x^2-8=x-2, x^2-x-6=0, x_1=-2, x_2=3$. Так как x=-2является решением неравенства $2^{x+1} > 2^{x^3}$, а x=3 не является , то решение системы будет X=-2.

Ответ: x = -2.

Замечание. Если система состоит из одного уравнения и одного неравенства с одним неизвестным, то ее решениями будут те корни уравнения, которые являются и решениями неравенства.

Упражнения для самостоятельного решения

Решить систему уравнений (1-27):

1)
$$\begin{cases} 2x - y = 1 \\ 5^{x+y} = 25 \end{cases}$$
;

2)
$$\begin{cases} x - y = 2 \\ 3^{x^2 - y} = \frac{1}{9}; \end{cases}$$

2)
$$\begin{cases} x - y = 2 & 3 \\ 3^{x^2 - y} = \frac{1}{9}; \end{cases} \begin{cases} x + y = 1 \\ 2^{x - y} = 8; \end{cases}$$

4)
$$\begin{cases} x + 2y = 3 \\ 3^{x-y} = 81 \end{cases}$$
;

5)
$$\begin{cases} 4^{x} \cdot 2^{y} = 32 \\ 3^{8x+1} = 3^{3y} \end{cases}$$
; 6)
$$\begin{cases} 3^{3x-2y} = 81 \\ 3^{6x} \cdot 3^{y} = 27 \end{cases}$$
;

$$\begin{cases} 3^{3x-2y} = 81 \\ 3^{6x} \cdot 3^y = 27 \end{cases}$$

7)
$$\begin{cases} 2^{x} + 2^{y} = 6 \\ 2^{x} - 2^{y} = 2 \end{cases}$$

8)
$$\begin{cases} 3^x + 5^y = 8 \\ 3^x - 5^y = -2 \end{cases}$$

8)
$$\begin{cases} 3^{x} + 5^{y} = 8 \\ 3^{x} - 5^{y} = -2 \end{cases}$$
; 9)
$$\begin{cases} 5^{x} - 5^{y} = 100 \\ 5^{x-1} + 5^{y-1} = 30 \end{cases}$$
;

10)
$$\begin{cases} 2^{x} - 9 \cdot 3^{y} = 7 \\ 2^{x} \cdot 3^{y} = \frac{8}{9} \end{cases}$$
;
$$\begin{cases} 16^{y} - 16^{x} = 24 \\ 16^{x+y} = 256 \end{cases}$$
;
$$\begin{cases} 3^{x} + 2^{x+y+1} = 5 \\ 3^{x+1} - 2^{x+y} = 1 \end{cases}$$
;

$$\begin{cases}
16^{y} - 16^{x} = 24 \\
16^{x+y} = 256
\end{cases}$$

12)
$$\begin{cases} 3^{x} + 2^{x+y+1} = 5 \\ 3^{x+1} - 2^{x+y} = 1 \end{cases}$$
;

13)
$$\begin{cases} 5^{x+1} \cdot 3^{y} = 75 \\ 3^{x} \cdot 5^{y-1} = 3 \end{cases}$$
;

14)
$$\begin{cases} 3^x \cdot 2^y = 4 \\ 3^y \cdot 2^x = 9 \end{cases}$$

14)
$$\begin{cases} 3^{x} \cdot 2^{y} = 4 \\ 3^{y} \cdot 2^{x} = 9 \end{cases}$$
; 15)
$$\begin{cases} 5^{2x+1} > 625 \\ 11^{6x^{2}-10x} = 11^{9x-15} \end{cases}$$
;

16)
$$\begin{cases} 0.3^{10x^2-47x} = 0.3^{-10x-7} \\ 3.7^{x^2} = 3.7^4 \end{cases}$$
;

17)
$$\begin{cases} (5^x)^y = 5^{21} \\ 5^x \cdot 5^y = 5^{10} \\ 3^x > 3^y \end{cases}$$

16)
$$\begin{cases} 0.3^{10x^2 - 47x} = 0.3^{-10x - 7} \\ 3.7^{x^2} = 3.7^4 \end{cases}$$
;
$$\begin{cases} (5^x)^y = 5^{21} \\ 5^x \cdot 5^y = 5^{10} \\ 3^x > 3^y \end{cases}$$
;
$$\begin{cases} (0.2^y)^x = 0.008 \\ (0.4)^y = 0.4^{3.5 - x} \\ 2^x \cdot 0.5^y < 1 \end{cases}$$

19)
$$\begin{cases} x - y = 1, \\ 4^{2x - 3y} = 1 \end{cases}$$

20)
$$\begin{cases} 3^{X} \cdot 2^{Y} = 12, \\ 2^{Y+1} - 3^{X} = 5 \end{cases}$$

20)
$$\begin{cases} 3^{X} \cdot 2^{Y} = 12, \\ 2^{Y+1} - 3^{X} = 5 \end{cases}$$
 21)
$$\begin{cases} 6^{5-x} > \frac{1}{3}, \\ 0, 6^{x^{2}} = 0, 6^{5x+6}. \end{cases}$$

22)
$$\begin{cases} 0.3^{xy} = \left(3\frac{1}{3}\right)^{-12}, \\ 2^{x} \cdot 2^{y} = 2^{3} \cdot 2^{-10}, \\ 0.5^{x} \rangle 0.5^{y}. \end{cases}$$

22)
$$\begin{cases} 0,3^{xy} = \left(3\frac{1}{3}\right)^{-12}, \\ 2^{x} \cdot 2^{y} = 2^{3} \cdot 2^{-10}, \\ 0,5^{x} \rangle 0,5^{y}. \end{cases}$$
 23)
$$\begin{cases} x - 2y = 1, \\ 3^{x-3y} = 27. \end{cases}$$
 24)
$$\begin{cases} 5^{x} \cdot 3^{y} = 135, \\ 3^{y} - 5^{x+1} = 2. \end{cases}$$

25)
$$\begin{cases} 7^{x-2} \langle 0, 4, \\ \left(\frac{1}{6}\right)^6 = \left(\frac{1}{2}\right)^{x^2 + x}. \end{cases}$$

25)
$$\begin{cases} 7^{x-2}\langle 0,4, \\ \left(\frac{1}{6}\right)^{6} = \left(\frac{1}{2}\right)^{x^{2}+x} \end{cases}$$
26)
$$\begin{cases} \left(13^{x}\right)^{y} = 13^{-8}, \\ \left(\frac{3}{2}\right)^{x} \cdot \left(\frac{2}{3}\right)^{-y} = \frac{4}{9}, \\ \pi^{x}\rangle \pi^{y}. \end{cases}$$

Творческие задания

Задание 1. Решите показательные уравнения:

1)
$$2^{x+4} - 3 \cdot 5^x = 5^{x+1} - 4 \cdot 2^x$$
;

2)
$$x^2 \cdot 7^{\sqrt{2x+5}-2} + 25 \cdot 7^{x-1} = x^2 \cdot 7^{x-1} + \frac{25}{49} \cdot 7^{\sqrt{2x+5}}$$
;

3)
$$5^{3x+1} - 4 \cdot 100^x = 5 \cdot 80^x - 4^{3x+1}$$
; 4) $x^2 \cdot 3^{\sqrt{2x-1}-1} + 3^x = 3^{\sqrt{2x-1}+1} + x^2 \cdot 3^{x-2}$;

$$x^2 \cdot 3^{\sqrt{2x-1}-1} + 3^x = 3^{\sqrt{2x-1}+1} + x^2 \cdot 3^{x-2}$$
;

5)
$$(3-2\sqrt{2})^x + (3+2\sqrt{2})^x = 34;$$

$$(3-2\sqrt{2})^x + (3+2\sqrt{2})^x = 34;$$
 6) $5(2+\sqrt{3})^x - (2-\sqrt{3})^x = 4;$

7)
$$3.16^x + 2.81^x = 5.36^x$$
;

8)
$$9 \cdot 4^x + 5 \cdot 6^x = 4 \cdot 9^x$$
;

9)
$$2^{2x^2} + 2^{x^2 + 2x + 2} = 2^{5 + 4x}$$
;

10)
$$3 \cdot 5^{2x^2 + 6x - 9} = 4 \cdot 15^{x^2 + 3x - 5} + 3^{2x^2 + 6x - 9}$$
;

11)
$$\left(\frac{1}{2}\right)^x + \left(\frac{1}{5}\right)^x = 7;$$

12)
$$(x-3)^{x^2-4x-5}=1$$
;

13)
$$x^{x^2-5x-6}=1$$
;

$$14) \qquad (tgx)^{\sin x} = \sqrt{tgx} ;$$

 $(\sin 2x)^{\cos x} = \frac{1}{\sqrt{\sin 2x}};$

16) $x \cdot 3^{\sin x} + 2\sqrt{3} = \sqrt{3}x + 2 \cdot 3^{\sin x}$;

 $17) \qquad \sqrt{x+1} = \left(\frac{1}{2}\right)^x;$

18) $9^{\cos^2 x} + 3^{\cos 2x} = 12 \cdot 9^{\sin x \cos x}$.

Задание 2. Решите показательные неравенства:

1) $9^x + 25^x \le 2 \cdot 15^x$;

2) $(x^2-7x+12)(5^x-25) \ge 0$;

3) $9 \cdot 4^{\frac{1}{x}} + 5 \cdot 6^{\frac{1}{x}} < 4 \cdot 9^{\frac{1}{x}}$;

4) $(x^2-4x+3)(2^x-8) \le 0$;

5) $(0,6)^{|2x-5|} \ge (0,6)^{3x-1};$ **6**) $\sqrt{4^x - 2^{x+3} + 8} \ge \sqrt{3 - 2^{x+1}}:$

7) $\left(\frac{1}{5}\right)^{\frac{2x+1}{1-x}} \ge 125$;

8) $\sqrt{2^x+3} - \sqrt{2^{x+1}-1} \le \sqrt{3 \cdot 2^x - 2}$;

9) $(0.2)^{\frac{2x-3}{x-2}} > 5$:

10) $(x^2 + x + 1)^x < 1$;

11) $5^{|4x-6|} \ge 25^{3x-4}$;

12) $(x^2-x+1)^x < 1$.

Задание 3. Решите систему показательных уравнений:

1) $\begin{cases} 3^x \cdot 2^y = \frac{1}{9}; \\ y = x - 2 \end{cases}$

 $\begin{cases} 5^{2xy+x^2-3y-2} = 125 \\ 2^{x-2y+3} = 8 \end{cases}$

3) $\begin{cases} 2^{y} \cdot 5^{-x} = 200 \\ x + y = 1 \end{cases}$; $\begin{cases} 4 \cdot 5^{x-1} + 0, 1 \cdot 2^{y+2} = 4, 2 \\ 25^{x} + 2^{y} = 25, 5 \end{cases}$;

$$\begin{cases} 3^{x-3y+1} = 27 \\ 2^{2x+y+2} = 32 \end{cases}$$

6)
$$\begin{cases} 0.5 \cdot 3^{x+1} + 7.5 \cdot 5^{y-1} = 12 \\ 2 \cdot 9^x + 5^y = 23 \end{cases}$$
;

$$\begin{cases} 5^{2x+y+2} = 125 \\ 3^{x-2y+1} = \frac{1}{9} \end{cases}$$
;

8)
$$\begin{cases} 2^{2x-2y} + 2^{x-y} = 0\\ 2^{2x+1} + \left(\frac{1}{2}\right)^{2y-1} = 5 \end{cases}$$

9)
$$\begin{cases} 2^{3xy-x^2+y^2-x} = 256 \\ 3^{2x-y+1} = 3 \end{cases}$$
;

9)
$$\begin{cases} 2^{3xy-x^2+y^2-x} = 256 \\ 3^{2x-y+1} = 3 \end{cases}$$
;
$$\begin{cases} 3^{2x-2y} + 2 \cdot 3^{x-y} - 3 = 0 \\ 3^x + 3^{1-y} = 4 \end{cases}$$
.

Контрольная работа

Вариант 1

1. Решить уравнение:

1)
$$\left(\frac{1}{5}\right)^{2-3x} = 25;$$

1)
$$\left(\frac{1}{5}\right)^{2-3x} = 25;$$
 2) $4^x + 2^x - 20 = 0.$

2. Решить неравенство $\left(\frac{3}{4}\right)^x > 1\frac{1}{3}$.

3. Решить систему уравнений $\begin{cases} x - y = 4, \\ 5^{x+y} = 25. \end{cases}$

4. Решить неравенство:

1)
$$\left(\sqrt{5}\right)^{x-6} \langle \frac{1}{5} :$$

$$2)\left(\frac{2}{13}\right)^{x^2-1} \ge 1.$$

5.Решить уравнение $7^{x+1} + 3 \cdot 7^x = 2^{x+5} + 3 \cdot 2^x$.

Вариант 2.

1.Решить уравнение:

1)
$$0,1^{2x-3} = 10;$$

2)
$$9^x - 7 \cdot 3^x - 18 = 0$$
.

- 2. Решить неравенство $\left(1\frac{1}{5}\right)^x \langle \frac{5}{6}.$
- 3. Решить систему уравнений $\begin{cases} x + y = -2, \\ 6^{x+5y} = 36. \end{cases}$
- 4. Решить неравенство:

$$1)\left(\sqrt[3]{3}\right)^{x+6}\rangle\frac{1}{9};$$

1)
$$\left(\sqrt[3]{3}\right)^{x+6} > \frac{1}{9}$$
; 2) $\left(1\frac{2}{7}\right)^{x^2-4} \le 1$.

5.Решить уравнение $3^{x+3} + 3^x = 5 \cdot 2^{x+4} - 17 \cdot 2^x$.

ЛИТЕРАТУРА

- 1. Алгебра и начала анализа: учеб. для 10-11 кл. общеобразоват. учреждений / Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров и др. 15-е изд. М.: Просвещение, 2007. 384 с.: ил.
- 2. **Багманов А.Т., Иванов Л.А., Толстых И.В**. Математика. Избранные задачи. Абитуриенту 2002 для самостоятельной работы. СПб.: СПбГТУ, 2002. 150 с.
- 3. **Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И.** Алгебра и математический анализ для 11 класса. // Учебное пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 1993.
- 4. **Доброва О.Н.** Задания по алгебре и математическому анализу. М.: Просвещение, 1996.
- 5. *Ивлев Б.М.*, *Абрамов А.М.*, *Дудницын Ю.П.*, *Шварцбурд С.И*. Задачи повышенной трудности по алгебре и началам анализа. М.: Просвещение, 1990.
- 6. *Потапов М.К., Олехник С.Н., Нестеренко Ю.В*. Математика для абитуриента. М.: НТЦ «Университетский», 1994.
- 7. *Симонов А.Я.*, *Бакаев Д.С.*, *Эпельман А.Г.* и др. Система тренировочных задач и упражнений по математике. М.: Просвещение, 1991.
- 8. *Сканави М.И.* Сборник конкурсных задач по математике для поступающих во втузы. / Учебное пособие. М., 1994.