Лекция 4. Фокусное расстояние, матрицы в фотоаппарате

Фокусное расстояние

Фокусное расстояние — это одно из основных свойств объектива, определяющее его угол обзора и перспективу. Оно измеряется в миллиметрах (мм) и обозначает расстояние от оптического центра объектива до сенсора (или фотопленки), когда объект находится в фокусе. Чем меньше фокусное расстояние, тем шире угол обзора. Соответственно, чем больше фокусное расстояние, тем уже угол обзора, что позволяет более детально снимать удаленные объекты.

Виды фокусных расстояний

Широкоугольные объективы (менее 35 мм): Эти объективы обладают большим углом обзора, их используют для пейзажной фотосъемки, интерьерной съемки и в ситуациях, когда необходимо захватить больше пространства в кадре. Однако они могут создавать искажения, особенно по краям кадра.

Нормальные объективы (35-50 мм): Эти объективы обеспечивают естественную перспективу, близкую к восприятию человеческого глаза. Они хорошо подходят для портретной и уличной съемки.

Телефотообъективы (более 50 мм): Идеальны для съемки удаленных объектов, таких как спортивные события или дикая природа. Они обеспечивают меньший угол обзора, но позволяя получить более крупные планы удаленных объектов.

Зум-объективы: Эти объективы имеют переменное фокусное расстояние и позволяют фотографу изменять угол обзора без смены объектива. Однако качество изображения может варьироваться в зависимости от положения зума.

Влияние фокусного расстояния на изображение

Глубина резкости: Объективы с коротким фокусным расстоянием обеспечивают большую глубину резкости, что позволяет сохранять в фокусе как близкие, так и дальние объекты. Длиннофокусные объективы, наоборот, имеют меньшую глубину резкости, что позволяет выделить объект на фоне.

Перспектива: Фокусное расстояние влияет на то, как воспринимается пространство на изображении. Например, широкий угол обзора может создавать впечатление глубины и простора, в то время как длинный фокус может "сжимать" пространство, приближая объекты на различных расстояниях друг к другу.

Матрицы в фотоаппарате

Сенсор (матрица) фотоаппарата — это устройство, которое преобразует свет в электрический сигнал. Основные типы матриц: CCD (Charge-Coupled Device) и CMOS (Complementary Metal-Oxide-Semiconductor). Каждый из этих типов имеет свои особенности и области применения.

<u>CCD-матрицы</u>

Высокое качество изображения: CCD-матрицы обычно обеспечивают более высокое качество изображения с меньшим уровнем шумов, что крайне важно для профессиональной фотографии.

Потребление энергии: Они потребляют больше энергии и часто используют более сложные технологии обработки изображения. Это может привести к увеличению цены на камеры.

CMOS-матрицы

Низкое энергопотребление: CMOS-матрицы потребляют значительно меньше энергии, что делает их идеальными для компактных и мобильных камер.

Интеграция: Эти матрицы позволяют интегрировать обработку изображения на саму матрицу, что может снизить стоимость и размер камер.

Разрешение матриц

Разрешение матрицы определяется количеством пикселей на сенсоре и измеряется в мегапикселях (МП). Более высокое разрешение позволяет получать больше деталей, особенно при печати изображений в большом формате, однако это также увеличивает размер файла и требования к обработке.

Форматы матриц

Матрицы бывают разных форматов:

Полноразмерные (Full-frame): Имеют размеры 36x24 мм и соответствуют формату 35 мм пленки. Они обеспечивают максимальное качество изображения и глубину резкости.

APS-C: Меньшие матрицы (примерно 22x15 мм), предоставляют кропфактор примерно 1.5, что увеличивает фокусное расстояние объектива относительно полноразмерной матрицы.

Микро 4/3: Еще меньшие матрицы (примерно 17.3х13 мм) обеспечивают кроп-фактор 2.0, что также влияет на выбор объективов и их использование.

Взаимодействие фокусного расстояния и матрицы

Фокусное расстояние объектива и размер матрицы взаимосвязаны и влияют на изображение. Например, увеличение фокусного расстояния на сенсоре большего размера даст более широкий угол обзора и лучшее качество изображения по сравнению с тем же фокусным расстоянием на более компактной матрице.

Кроп-фактор и композиция: Когда вы используете объектив с фиксированным фокусным расстоянием на камере с меньшей матрицей, фактический угол обзора будет меньше. Это важно учитывать при композиции кадра и выборе объектива для конкретных задач.

Качество изображения: С большими матрицами качество изображения обычно лучше, так как они в состоянии уловить больше света, способствуя повышению динамического диапазона и детализации, особенно в условиях низкой освещенности.

