МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЯЗАНСКОЙ ОБЛАСТИ

Областное государственное бюджетное профессиональное образовательное учреждение «Рязанский строительный колледж имени Героя Советского Союза В.А. Беглова»

Методические рекомендации по выполнению практической работы «Построение индивидуального жилого дома в программе Renga»

По дисциплине: «Информационные технологии в проектирование»

для специальности:08.02.01 «Строительство и эксплуатация зданий и сооружений» базовый и углубленной подготовки

Одобрена методической комиссией

Проток	:ол №		
от «	»	20	г.

Составлена в соответствии с Федеральным государственным образовательным стандартом по специальности/профессии

Председатель МК: <u>Рахманова Л.В.</u> (_____)

Разработчик: Зазвонова Т.И. (_____)

Аннотация

Дисциплина «Информационные технологии в проектирование»

Методические рекомендации по выполнению практической работы «Построение индивидуального жилого дома в программе Renga» являются частью основной профессиональной образовательной программы по специальности 08.02.01 Строительство и эксплуатация зданий и сооружений в соответствии с требованиями ФГОС СПО четвертого поколения.

Методические рекомендации предназначены для студентов в помощь для работы на практических занятиях.

Содержание

№п/п	Наименование тем, разделов	Стр.
1.	Введение	4
2.	Цель работы	4
3.	Постановка задания	5
4.	Выполнения задания	6
5.	Инструкция по выполнению задания	7-30
6.	Образец работы	31
7.	Литература	32

Введение

• Краткий рассказ о содержании компетенции

Компетенция Технологии информационного моделирования ВІМ является естественной эволюцией архитектора и инженера-проектировщика строительной отрасли с целью повышения эффективности и производительности, снижения себестоимости, обеспечения высокого качества проекта за счёт сквозного управления жизненным циклом здания или сооружения на всех его стадиях — от разработки до утилизации.

Компетенция призвана подготовить специалистов, способных разработать информационную модель здания, сформировать на основе этой модели связанные чертежи и обеспечить грамотный обмен данными между участниками инвестиционно-строительной деятельности. Разработка проекта включает в себя следующие модули:

- информационное моделирование здания;
- координация информационных моделей;
- презентация результатов.

Компетенция является командной и направлена на приобретение soft-навыков. Технические специалисты, компетентные в управлении проектами, ВІМ-моделировании, разработке проектносметной документации объединяются, чтобы создать эффективную и технологичную команду, работающую по ВІМ-процессам – от проектирования ВІМ-модели здания до ввода в эксплуатацию.

• Место и перспективы компетенции в современной экономике страны, мира

Развитие компетенции обусловлено стремительными глобальными изменениями в строительной сфере, которые диктуют новые требования к кадрам и их навыкам. Готовится к выходу профессиональный стандарт «Специалист по информационному моделированию в сфере строительства».

Профессия «ВІМ-менеджер-проектировщик» включена в Атлас новых профессий.

- Ключевые навыки и знания для овладения компетенцией
 - знания предметной области: архитектура, строительные конструкции, инженерные системы;
 - создание 3D-информационной модели здания;
 - грамотно оформлять чертежи согласно ГОСТ;
 - работать с открытым общеобменным форматом IFC;
 - определять коллизии в 3D-модели;
 - организация коллективной работы над проектом;
 - календарное и ресурсное планирование.

Также необходимы:

- управление проектами;
- системное мышление;
- межотраслевые коммуникации.

Постановка задания

Создайте модель загородного дома для своей семьи.

Исходные данные: шаблон с готовой рабочей плоскость; пошаговая инструкция выполнения задания.

Итоговая модель

Данная модель представлена в качестве примера. Инструкцию по выполнению будет выдаваться на занятии. При моделировании ребята могут вносить свои изменения в модель

3. Выполнения задания

Краткий план выполнения задания:

1. Перекрытие

Спроектировать перекрытие в соответствии с ТЗ

2. Наружные стены

Спроектировать наружные стены в соответствии с ТЗ

3. Перегородки

Спроектировать внутренние перегородки с учетом требований планировки

4. Перекрытие

Спроектировать перекрытие в соответствии с ТЗ

5. Кровля

Спроектировать кровлю дома в соответствии с ТЗ, использую инструмент Крыша

6. Окна и двери (входная и межкомнатные)

Установить окна, межкомнатные двери (проемы), входную дверь.

Инструкция по выполнению задания

1. Простановка осей.

Для осевой разметки будущего здания или сооружения предназначен специальный инструмент из группы обозначений «Ось».

Оси в модели располагаются только в плоскости ХОҮ активного уровня (того уровня, где размещена в данный момент рабочая плоскость). При размещении рабочей плоскости на другом уровне оси, также как обозначения разрезов и фасадов, будут перемещены на активный уровень.

Ось

Обозначение Ось (А) включает следующие способы построения осей:

- 🔨 Автоматически по подобию;
- Прямая по двум точкам;
- 🌈 Дуга по трём точкам;
- Дуга по начальной точке, радиусу и конечной точке;
- Окружность по центру и радиусу.

Параметры оси:

🔊 Обозначение оси.

Длина выпуска оси. Определяет расстояние от крайней характерной точки до обозначения оси.

Параметры оси могут быть изменены в процессе построения и при редактировании. Нажмите ENTER, чтобы зафиксировать значения параметров.

l	инстру	/менть	ы
3	ð)	Ú
			/
24			H
Ħ	/	2	P
Ł	đ	8	ð
8	\bigcirc	6	Ð
80	\bigcirc	ÉD	ð
	\bigotimes	()	0
ĪØ	\mathcal{C}	Ф	Т
	6		
			- - - -
	T1		-
9m°	<		
Спо	соб по	острое	ния
1	~	5	6
Ø			
	ара	метры	
	5		
Ĥ	2 000	,00	MM

ый нь Оси связаны с рабочей плоскостью. При перемещении рабочей плоскости на другой уровень оси перемещаются вместе с ней.

🕖 С помощью клавиши SHIFT точка привязывается к ближайшему узлу координатной сетки.

При создании осей доступны все универсальные операции.

Чтобы изменить, скопировать или переместить созданную ось, выделите её с помощью инструмента Выбор объекта. Для создания сетки координационных осей используйте Действия.

2. Перекрытие

Инструмент Перекрытие — включает следующие способы построения перекрытий:

- 🔨 Автоматически по подобию;
- Прямая по двум точкам;
- Дуга по трём точкам;
- Дуга по начальной точке, радиусу и конечной точке;
- Окружность по центру и радиусу.

Вы можете комбинировать такие способы построения, как Прямая по двум точкам, Дуга по трём точкам и Дуга по начальной, центру и конечной точкам при создании перекрытия.

Обратите внимание, что перекрытие не может быть создано корректно, если его границы пересекаются.

Параметры перекрытия:

- Толщина перекрытия;
- ⊕≑ Уровень. Определяет, на каком уровне находится перекрытие.
- Смещение по вертикали. Определяет смещение перекрытия по вертикали относительно точки вставки. Перекрытие строится вниз от точки вставки.
- 🔜 Многослойный материал.
- △ Угол армирования перекрытия. Угол раскладки арматуры в перекрытии относительно оси Ох.
- Стиль армирования. Стиль армирования применяется только к базовому слою многослойного материала перекрытия.
- **Марка.** Отображается в спецификациях. Необходима для вставки в чертеж.

Параметры перекрытия могут быть изменены в процессе построения и при редактировании. Нажмите ENTER, чтобы зафиксировать значения параметров.

При создании перекрытий доступны все универсальные операции.

Чтобы отредактировать перекрытие, используйте характерные точки.

(отсканируй QR-код и посмотри как выполнять это действие)

3. Стены

Построим стену, используя инструмент Стена. Высота 3000 мм, ширина 400 мм. Способ построения автоматически по подобию.

Получим.

Стена

Инструмент Стена 🔲 включает следующие способы построения стен:

- 🔸 Автоматически по подобию;
- 🖍 Прямая по двум точкам;
- 🌈 Дуга по трём точкам;
- Дуга по начальной точке, радиусу и конечной точке;
- 🕐 Окружность по центру и радиусу.

Параметры стены:

Расположение стены относительно базовой линии. При работе со стенами базовая линия обозначается жёлтым цветом.

- 📲 Высота стены.
- Толщина стены.
- Эф Уровень. Определяет, на каком уровне находится стена.

Смещение по вертикали. Определяет смещение стены по вертикали относительно базовой линии.

<u>Многослойный материал</u>.

<u>Стиль армирования</u>. Стиль армирования может быть применён только к базовому слою <u>многослойного материала</u> стены.

Марка. Отображается в спецификациях. Необходима для вставки в <u>чертеж</u>.

Параметры можно изменять, как в процессе построения стены, так и при редактировании. Нажмите ENTER, чтобы зафиксировать значения параметров.

При построении стен доступны все универсальные операции.

- Чтобы <u>привязать</u> к стене другие объекты, используйте любую из трёх линий привязки: слева, по центру, справа. Чтобы выбрать линию привязки, подведите указатель мыши к её
 - предполагаемому положению.
 - Пример

(отсканируй QR-код и посмотри как выполнять это действие)

При построении или редактировании стен отображаются базовые линии выделенные жёлтым цветом. Используйте привязки к базовым линиям при построении для сопряжения стен.

Пример

(отсканируй QR-код и посмотри как выполнять это действие)

На уровне стены отображаются заштрихованными только если они попадают в сечение и определен их материал.

Чтобы изменить, скопировать или переместить созданную стену, выделите её с помощью инструмента Выбор объекта.

4. Построим внутренние стены, так же через инструмент

Стена.

Высота 3000 мм, ширина 200 мм.

Способ построения по двум точкам. Для построения

используем пересечения оси.

Получим

Спо	соб построения
	Параметры
٦	🔲 По центру 🔻
(0,00 MM
I	3 000,00 MM
H	200,00 MM
0÷	Уровень 1го з 🔻
I	0,00 MM
	(нет) 🔻
₽	(нет) 🔻
(A1	(нет) 🔻

5. Построение крыши

Для построения крыши, нам необходимо создать новый уровень Для этого используеминструмент **Обозначение,** тип обозначения - **Уровень**, высота 3000 мм.

Для дальнейшей работы нам необходимо перенести рабочую плоскость. Для этого выбираемуровень Кровля, затем нажимаем правую клавишу мыши, **разместить рабочую плоскость**.

Теперь мы будем работать на уровне Кровля. Разместим перекрытие, как мы делали это раньше .

В Параметрах кровли указываем толщину 200.

В сегментах ставим угол 50 и способом построение по окружности делаем купол радиусом 2000мм.

Крыша

С помощью инструмента Крыша 🔊 можно построить скатные и плоские крыши различных форм.

Инструмент включает следующие способы построения сегментов:

- 🔸 Автоматически по подобию;
- Прямая по двум точкам;
- 🌈 Дуга по трём точкам;
- С Дуга по начальной точке, радиусу и конечной точке;
- И Окружность по центру и радиусу.
 - 🕖 При создании крыши можно комбинировать способы построения сегментов.

Общие параметры крыши:

- 📼 Толщина крыши;
- Ф= Уровень. Определяет, на каком уровне находится крыша.
- Смещение по вертикали. Определяет смещение крыши по вертикали относительно точки вставки.
- 🔜 Материал.
- Марка. Используется для вставки объектов в чертёж.

(отсканируй QR-код и посмотри как выполнять это действие)

Устанавливаем угол 30 градусов, свес 500. И строим вальмовую крышу по 4 углам.

Общие параметры крыши могут быть изменены как в процессе построения крыши, так и при редактировании.

При создании крыш доступны все универсальные операции.

Крыша обрезает объекты, которые находятся под ней . Если крыша лишь частично пересекает объект, высотная отметка которого выше, то объект не будет обрезан.

Сегмент крыши

Каждый сегмент крыши обладает своими параметрами.

Перед началом построения выберите Форму сегмента 杯 в раскрывающемся списке Форма сегмента:

- Скат;
- Фронтон.

У Чтобы создать плоскую крышу нужно выбрать Форму сегмента – Фронтон для всех сегментов крыши.

Для ската задайте:

∆ Угол наклона ската;

Ф Уровень ската. Определяется относительно уровня, на котором расположена крыша;

🕞 Свес. Размер свеса в проекции на рабочую плоскость.

Чтобы отредактировать параметры сегмента крыши:

- 1. Выделите крышу.
- 2. Выберите характерную точку середины 🛆 сегмента.

- 3. Отредактируйте параметры.
 - Учтобы не изменить положение сегмента переключитесь между панелями с помощью сочетания клавиш CTRL+TAB, а между полями панели Сегмент с помощью клавиши TAB.

Если положение изменилось, то чтобы вернуть точку в предыдущее положение используйте привязку на пересечении лучей, которые автоматически появляются при редактировании.

4. Зафиксируйте положение характерной точки.

Круглая крыша

Для построения круглой крыши:

- 1. На панели Инструменты, выберите инструмент Крыша 🕰 .
- 2. Выберите способ построения Окружность по центру и радиусу
- 3. На панели Сегмент выберите форму сегмента.
- 4. На рабочей плоскости укажите точку центра.
- 5. Укажите точку окружности или задайте значение радиуса в динамическом поле ввода.

Если для круглой крыши выбрана Форма сегмента – Скат, крыша будет построена в форме конуса. Если выбрана Форма сегмента – Фронтон, то будет построена плоская круглая крыша.

Прямолинейный сегмент крыши

Чтобы построить прямолинейный сегмент крыши:

- 1. На панели Инструменты, выберите инструмент Крыша 🧢
- 2. Выберите способ построения Прямая по двум точкам
- 3. На панели Сегмент выберите форму сегмента и задайте его параметры.
- 4. На рабочей плоскости укажите первую точку сегмента крыши с помощью привязок.
- 5. Затем укажите вторую точку или задайте параметры в динамических полях ввода (см. Точное построение).
- 6. Продолжите построение крыши.
- 7. Нажмите ENTER чтобы завершить построение.

6. Расстановка и создание дверей и окон

Добавим двери и окна. Возвращаем рабочую плоскость на уровень первого этажа.

Для удобства скроем уровень Кровля. Для этого выбираем уровень Кровля, правая клавиша мыши, выбираем Скрыть.

Knoppg			
+3,000	Разместить рабочую плоскость		Ĩ
	Открыть		-
	Скрыть		
Уровень 1го этажа	Изолировать		
±0,000	Показать		
	Показать все		
	Выбрать	•	
	Визуальный стиль	Þ	
	Вырезать		
	Копировать		
	Вставить		
	Удалить		-

Теперь займемся размещением дверей. Вставим входную дверь через функционал Дверь.

Инструмент Дверь позволяет создавать в построенных стенах дверные проёмы с заполнением.

Проёмы дверей могут быть следующих форм:

- 🔲 Прямоугольный проём.
- Арочный проём.
- Полуарочный проём.
- 🗋 Полутрапециевидный проём.
- 🗋 Трапециевидный проём.

Чтобы создать дверь:

- 1. На панели Инструменты, выберите инструмент Дверь 🗍 .
- 2. Выберите форму двери.
- 3. Задайте Параметры двери:
 - Высота двери.
 - Ширина двери.
 - ∑ Высота арки/трапеции двери.
 - ⊕≑ Уровень. Определяет, на каком уровне находится дверь.
 - Смещение по вертикали. Определяет смещение двери по вертикали относительно точки вставки.
 - 🗄 Стиль двери.
 - Расположение дверного проёма. При расположении Вдоль стены проём повторяет форму стены и позволяет создавать радиусные двери.
 - Стиль армирования. Стиль армирования применяется для усиления стен в местах размещения дверных проёмов.
 - **Марка.** Отображается в спецификациях. Необходима для вставки в чертеж.
- 4. Если стиль двери определен, задайте его параметры:
 - 🗦 🗧 Ориентация заполнения двери.
 - **Глубина** расположения двери.
- 5. Укажите точку вставки двери в стене.

Параметры можно изменять как в процессе построения, так и при редактировании объекта. Нажмите ENTER, чтобы зафиксировать значения параметров.

При создании дверей доступны все универсальные операции.

Чтобы изменить, скопировать или переместить созданную дверь, выделите её с помощью инструмента Выбор объекта. Чтобы изменить направление открывания двери используйте команду Перевернуть в контекстном меню.

Стили двери

Стиль двери можно применить к двери любой формы и размера. Стиль определяет внешний вид двери и пропорции заполнения, а также позволяет назначить свойства элементам данного стиля.

С помощью стиля двери вы можете управлять параметрами полотна, коробки, порога, наличника и фрамуги двери.

Если при назначении параметра Стиль двери в предложенном списке нет подходящего, можно создать свой стиль. Для этого в списке стилей двери нажмите **Другой**.

Кроме того, для создания и редактирования стилей дверей можно вызвать команду Основной

панели 🗇 Управление стилями – 🔳 Стили двери.

- 1. В редакторе Стили двери создайте новый стиль, нажав кнопку Новый стиль двери 🔭.
- 2. Задайте имя нового стиля.
- 3. В правой части окна добавьте полотна и задайте их свойства.

- 4. На вкладке Параметры задайте настройте внешний вид двери с помощью параметров Полотно, Коробка, Порог, Наличники, Фрамуга.
- 5. На вкладке Свойства можно задать значения свойств, созданных в редакторе 🖽 Свойства объектов.
- 6. Нажмите ОК.

Чтобы добавить полотно:

- 1. Нажмите кнопку Добавить полотно + в правом верхнем углу окна.
- 2. Щёлкните по новому полотну, оно подсветится розовым цветом. Задайте его свойства в раскрывающихся списках, находящихся в верхней части окна. Выбранные свойства будут схематически отображены в редакторе.
- 3. Чтобы задать ширину полотен, выделите разделитель между полотнами, затем перетащите его в нужное положение.
- 4. Чтобы задать ширину полотна более точно, выделите разделитель и введите значение отступа в процентах от левого или правого края.

Новое полотно всегда добавляется справа и по умолчанию делит последнее полотно на 2 равные части.

У Чтобы приблизительно представить, как будет выглядеть заполнение двери с нужными пропорциями, измените размеры диалогового окна.

Чтобы сократить количество дверных полотен нажмите Удалить полотно

Чтобы сохранить изменения в редакторе нажмите ОК. Чтобы отказаться от изменений нажмите Отмена.

Обратите внимание, при нажатии ОК после изменения/удаления стилей в редакторе, все двери, в которых использованы эти стили, будут изменены безвозвратно.

Можно выбрать как из существующих дверей так и создать абсолютно новую. И расставить двери в проекте.

Создаем окна.

Инструмент Окно Позволяет создавать в построенных стенах оконные проёмы с заполнением.

Проёмы окон могут быть следующих форм:

- Прямоугольный проём.
- 🗋 Арочный проём.
- Полуарочный проём.
- Прапециевидный проём.
- 🗋 Полутрапециевидный проём.
- О Овальный проём.

Чтобы создать окно:

- 1. На панели Инструменты, выберите инструмент Окно 🔟
- 2. Выберите форму окна.
- 3. Задайте Параметры окна:

1	Высота	окна.
---	--------	-------

η	1		
٦	1 111		
	И1	лина	окна
		JIIIG	omia

- № Высота арки/трапеции окна.
- ⊕≑ Уровень. Определяет, на каком уровне находится окно.
- Смещение по вертикали. Определяет смещение окна по вертикали относительно точки вставки.
- 📗 Стиль окна.
- Расположение оконного проёма. При расположении Вдоль стены оконный проём повторяет форму стены и позволяет создавать радиусные окна.
- Стиль армирования. Стиль армирования применяется для усиления стен в местах размещения оконных проёмов.

V	1нстру	менть/	ы
\triangleright	ð		Ũ
۲			R
Ħ	/	₿	<u>s</u>
Ł	Ö	8	5
8	Ø	6	Ð
ଟ୍ଡିତ	\bigcirc	ÉĐ	Ð
	\bigcirc	ē,	0
ĪØ	10	Ð	Т
Φ	орма	проём	ia

Марка. Отображается в спецификациях. Необходима для вставки в чертеж.

- 4. Если стиль окна определен, задайте параметры:
 - 📰 Наличие подоконника.
 - 📹 Наличие отлива.
 - 🕞 🖛 Ориентация заполнения окна.
 - 🛗 Глубина расположения окна.
- 5. Укажите точку вставки окна в стене.

Параметры можно изменять как в процессе построения, так и при редактировании объекта. Нажмите ENTER, чтобы зафиксировать значения параметров.

При создании окон доступны все универсальные операции.

Чтобы изменить, скопировать или переместить созданное окно, выделите его с помощью инструмента Выбор объекта.

Мы можем для расстановки окон использовать как стандартные окна, предложенные программой. Так и создавать новые.

Стили окна

Стиль окна можно применить к окну любой формы и размера. Стиль определяет внешний вид заполнения <u>окна</u> и его пропорции, а также позволяет назначить свойства элементам данного стиля.

Если при назначении параметра Стиль окна в предложенном списке нет подходящего, можно создать свой стиль. Для этого в списке стилей окна нажмите Другой.

Кроме того, для создания и редактирования стилей окна можно вызвать команду Основной

панели ^{Управление} стилями – ^{III} Стили окна. В редакторе Стилей окна отображается вид на окно с фасада.

- 1. В редакторе Стили окна создайте новый стиль заполнения, нажав кнопку Новый стиль окна 👎
- 2. Задайте имя нового стиля.
- 3. В правой части окна добавьте вертикальные и горизонтальные импосты.
- 4. На вкладке Параметры укажите материал конструкции и другие параметры рамы и импостов.
- 5. Во вкладке Свойства можно задать значения свойств, созданных в редакторе 🖽 Свойства объектов.
- 6. Нажмите **ОК**.

Чтобы добавить импост:

1. Щёлкните левой кнопкой мыши в поле окна. Оно подсветится розовым цветом.

- 2. Нажмите кнопку (или выберите в контекстном меню) Горизонтальный импост 😑 или Вертикальный импост Ш, в зависимости от того, как нужно разделить окно.
- 3. Перетащите импост в нужное положение, удерживая его левой кнопкой мыши.
- 4. Чтобы задать расположение импоста относительно рамы окна более точно, выделите импост и введите значение отступа от рамы в процентах в соответствующем поле.
- 5. Чтобы разделить окно еще раз, выберите область, в которую нужно поместить импост, щелкнув в ней левой кнопкой мыши.

🕖 Чтобы приблизительно представить, как будет выглядеть заполнение окна в нужных пропорциях, измените размеры диалогового окна.

Чтобы удалить импост нажмите Удалить импост 🕺 . При удалении импоста, удаляются все импосты и створки, которые находились в областях, образованных им.

Чтобы задать свойства створки:

- 1. Выберите область, которой нужно назначить тип и ориентацию створки.
- 2. Задайте свойства створки в раскрывающихся списках, находящихся в верхней части окна. Выбранные свойства будут схематически отображены в редакторе.

🕖 Если для области заданы свойства створки, то создать в ней импосты нельзя. Выберите тип створки Нет, чтобы изменить выбранную область.

Чтобы сохранить изменения в редакторе нажмите **ОК**. Чтобы отказаться от изменений нажмите **Отмена**.

🕖 Обратите внимание, при нажатии **ОК** после изменения/удаления стилей в редакторе, все окна, в которых использованы эти стили, будут изменены безвозвратно.

Расставим окна используя функционал окна, там где считаете нужным.

Получим.

Вернем видимость уровню Кровля.

					G T
Npoens • 3000			Дей	ствия	
	Разместить рабочую плоскость	- T-			•
	Открыть	17	1		Ŀ
Уровень 1го этажа	Скрыть Изолировать		Пара	метры	i
±0,000	Показать	A ¹	Кров	ля	
	Показать все				
	Выбрать	Þ			
	Визуальный стиль	Þ			
	Вырезать Копировать Вставить				
	Удалить	_			
	Свойства				
		_			

Получим с вами считай сформированное здание.

7.Назначаем материалы элементам

Назначим материал. Выберем стену, в свойствах выберем «Деревянные стены».

Проделаем тоже самое с Кровлей.

Материал назначается на панели Параметры вышеперечисленных инструментов, в параметре Материал *то* либо на вкладке Параметры в редакторе стиля объекта. Если в предложенном списке нет подходящего, можно создать свой материал. Чтобы создать новый материал в списке материалов нажмите Другой. Материалы используются при составлении многослойных материалов <u>стен</u>, <u>перекрытий</u> и <u>крыш</u>. Для создания и редактирования материалов можно также использовать команду Основной

панели 🗇 <u>Управление стилями</u> – 📟 Материалы.

- 1. В редакторе Материалы создайте новый материал, нажав кнопку Новый материал 📩
- 2. Задайте имя нового материала.
- 3. В правой части окна во вкладке Параметры задайте параметры материала.
- 4. Во вкладке Штриховки задайте штриховки.
 - Обратите внимание, что свойство Угол штриховки изменяет шаблонное значение наклона текстуры штриховки на заданный угол.

5. Во вкладке Текстуры при необходимости задайте файл изображения в формате PNG или JPEG и параметры его отображения на объектах Renga.

🕖 Текстура будет отображаться, если выбран <u>Визуальный стиль</u> – Текстурированный.

- 6. Во вкладке Свойства можно задать значения свойств, созданных в редакторе 🛅 Свойства объектов.
- 7. Нажмите ОК.

Чтобы сохранить изменения в редакторе нажмите ОК. Чтобы отказаться от изменений нажмите Отмена.

Обратите внимание, при нажатии OK после изменения/удаления стилей в редакторе, все объекты, в которых использованы эти стили, будут изменены безвозвратно.

Многослойные материалы

В Renga многослойные материалы можно применить для <u>стен, перекрытий</u> и крыш.

Многослойный материал назначается на панели Параметры вышеперечисленных инструментов, в параметре Многослойный материал . Если в предложенном списке нет подходящего, можно создать свой стиль. Чтобы создать новый многослойный материал в списке многослойных материалов нажмите Другой.

Кроме того, для создания и редактирования многослойных материалов стен, крыш и перекрытий можно

вызвать команду Основной панели 🗇 <u>Управление стилями</u> – 📟 Многослойные материалы.

- 1. В редакторе **Многослойные материалы**, выберите Тип объекта для которого необходимо создать материал (стена, перекрытие или крыша).
- 2. Создайте новый материал, нажав кнопку Новый многослойный материал +
- 3. Задайте имя нового материала.
- 4. В правой части окна выберите материал для базового слоя, создайте новые слои и задайте их параметры.
- 5. Во вкладке Свойства можно задать значения свойств, созданных в редакторе 🛅 Свойства объектов.
- 6. Нажмите **ОК**.

Толщину базового слоя нельзя задать, она вычисляется в зависимости от толщины объекта и остальных слоев. То есть, если слой один, то его толщина равна толщине объекта.

Чтобы задать только один материал многослойному объекту, выберите материал для базового слоя. Чтобы добавить слой:

- 1. В правой части окна нажмите Новый слой 🕇
- 2. Выберите материал из списка и задайте его толщину.

Если в списке материалов нет подходящего, создайте новый материал в <u>Редакторе</u> <u>материалов</u>.

Чтобы добавить слой такой же как существующий, выделите существующий слой и нажмите Дублировать слой ¹.

Чтобы удалить слой, выделите слой и нажмите Удалить слой 🗮 . Базовый слой удалить нельзя.

Чтобы выстроить слои в нужном порядке, перемещайте слои с помощью кнопок Переместить слой

выше ^ и Переместить слой ниже `.

Чтобы сохранить изменения в редакторе нажмите ОК. Чтобы отказаться от изменений нажмите Отмена.

Обратите внимание, при нажатии OK после изменения/удаления стилей в редакторе, все объекты, в которых использованы эти стили, будут изменены безвозвратно.

Мы можем самостоятельно создавать любой материал и многослойный материал. Или менять уже существующие.

7.	Построим Лестницу к зданию.
	Выставим параметры как показаны на рисунки.

Инструмент Лестница 🧐 включает следующие способы построения лестничных маршей:

- Прямая по двум точкам;
- **Дуга по трём точкам;**
- Дуга по начальной точке, радиусу и конечной точке.
- 🕖 При создании лестницы можно комбинировать способы построения.

Параметры лестницы:

- Г Расположение лестницы относительно базовой линии.
- Смещение лестницы по горизонтали. Может принимать отрицательные значения.
- Высота лестницы.
- Ширина лестницы.
- 🗳 Количество ступеней.
- Ширина проступи (определяется автоматически по заданным параметрам);
- Высота подступенка (определяется автоматически по заданным параметрам);
- Угол наклона лестницы (определяется автоматически по заданным ∆ параметрам);
- Форма лестницы. Определяет контурная, утолщенная, сплошная или открытая лестница.
 - Толщина лестницы. Определяет толщину подступенков и ступеней
- 述 контурной лестницы, толщину утолщенной лестницы, толщину ступеней открытой лестницы.
- 🕀 Уровень. Определяет, на каком уровне находится лестница.
- т Смещение по вертикали. Определяет высотную отметку лестницы относительно уровня.
- *Материал*.
- Марка. Параметр используется для вставки объектов в чертёж.

Параметры можно изменять, как в процессе построения лестницы, так и при редактировании. Нажмите ENTER, чтобы зафиксировать значения параметров.

Пажмите ENTER чтобы завершить построение лестницы. Угол подъема лестницы, ширина проступи и высота подступенка автоматически рассчитываются в зависимости от длины, высоты, количества ступеней и маршей лестницы. При построении лестниц доступны все универсальные операции.

🕖 Для привязки к лестнице других объектов можно использовать одну из трёх линий привязки: слева, по центру, справа.

Чтобы выбрать линию привязки, подведите указатель мыши к её предполагаемому положению. Лестница обрезает стены и перекрытия, которые находятся под ней. Если лестница лишь частично пересекает объект, высотная отметка которого выше, то объект не будет обрезан.

	I	Инструменты
	3	8 🗆 1
	2	s 🛛 🗗
111	Ħ	/80
	Ł	6 7 8
	80	0 0 1
	80	0 50 6
		0 0
	ĪØ	1 🖗 T
	Спо	особ построения
	1	rc
		Параметры
	5	🔝 По центру 🔻
	**)	0,00 MI
	51	300,00 MI
	苜	2 000,00 MIN
	2	3
	4	0,00 MI
	-	100,00 MI
	Δ	90,00
	3	Контурная 🔻
	÷	50,00 MI
	Ð\$	Уровень 1го з 🔻
	0‡	Уровень 1го з 🔻 0,00 мм
		Уровень 1 го з • 0,00 мм smeg sink21 •

Чтобы изменить, скопировать или переместить созданную лестницу, выделите её с помощью инструмента <u>Выбор объекта</u>. Чтобы изменить направление подъема лестницы (вверх/вниз) используйте команду <u>Перевернуть</u> в контекстном меню.

Чтобы построить прямолинейную лестницу:

- 1. На панели Инструменты, выберите инструмент Лестница 🧐
- 2. Выберите способ построения Прямая по двум точкам 🗸 .
- 3. На рабочей плоскости укажите точку начала марша с помощью привязок.
- 4. Затем укажите вторую точку или задайте значения в динамических полях ввода (см. <u>Точное</u> построение).
- 5. Продолжайте построение, пока лестница не будет закончена.
- 6. Нажмите ENTER чтобы завершить построение.

(отсканируй QR-код и посмотри как выполнять это действие)

Устонавливаем ограждения на лестницу.

Параметры ограждения на лестнице отличны от параметров других ограждений:

- **Т‡Т** Высота ограждения;
- Количество ступеней на балясину. Определяет частоту установки балясин. Значение 1 балясина на каждой ступени.
- 🗂 Отступ от линии привязки.
- Марка. Параметр используется для вставки объектов в <u>чертёж</u>.
- О Способ построения ограждения По лестнице доступен только в Полярном и Прямоугольном <u>режимах измерения</u>.

Для построения ограждения на лестнице:

- 1. На панели Инструменты, выберите инструмент Ограждение 🛲.
- 2. Выберите способ построения По лестнице 🛰 .
- 3. Затем подведите указатель мыши к <u>линии привязки лестницы</u>, по подобию которой должно быть построено ограждение. На лестнице появится фантомное изображение ограждения.
- 4. Зафиксируйте положение ограждения щелчком левой кнопки мыши.

При редактировании лестницы, на которой построено ограждение, ограждение меняется вместе с ней. Чтобы изменить параметры лестничного ограждения выделите его с помощью инструмента <u>Выбор объекта</u>.

Получим вход в здание.

Итог работы:

Литература: 1. И.А. Синянский, Н.И. Манешина Типология зданий,

Москва, Издательский центр «Академия», 2021.

- 2. Н.П. Вильчик Архитектура зданий, Москва, Инфра-М, 2020.
 - 3. ГОСТ 28984–2011 Модульная координация размеров в строительстве. Основные положения.М.: Стандартинформ, 2019.– 19 с.

4. ГОСТ Р 21.1101-2013 Национальный стандарт Российской федерации. Система проектной документации для строительства. Основные требования к проектной и рабочей документации. М.: Стандартинформ, 2019.– 59 с.

 ГОСТ 21.201-2011. Система проектной документации для строительства. Условные графические изображения элементов зданий, конструкций. М.: Стандартинформ, 2020. – 21 с.

6. ГОСТ 21.501-2011. Система проектной документации для строительства Правила выполнения рабочей документации архитектурных и конструктивных решений. М.: Стандартинформ, 2021. – 45 с.